The role of the rat frontal orienting field in movement planning

Jeffrey Erlich, Max Bialek & Carlos Brody

HHMI & Princeton University

Rat hippocampus and place cells (from O'Keefe)

Entorhinal cortex grid cell (from NTNU)

Neural circuit for deciding where to look

PPC Posterior Parietal Cortex

FEF Frontal Eye Field

SEF Supplementary Eye Field

DLPFC Dorsolateral Prefrontal Cortex

SC Superior Colliculus

from Curtis, 2005

from β

- Stimulation of FOF results in contralateral orienting movements (Sinnamon, 1984)
- Large lesions of cortex encompassing FOF results in impairments consistent with contralateral neglect (Cowey & Bozek, 1974; Crowne & Pathria, 1982)
- No pharmacology, almost no recording!!!!!! (1 book chapter, no papers)

What is the role of the rat Frontal Orienting Field in memory-guided orienting??

- Behavior: Memory-Guided Orienting
- Muscimol inactivation of FOF
- Tetrode recording of single units in FOF
- Conclusion: FOF is an essential part of the neural circuit for movement planning

The Training Room

Center LED on

Center LED on

Nose in center

Center LED on

Nose in center

Side Poke

Side Poke

Side Poke

Mem and Non-mem trials are randomly interleaved

Click Frequency Discrimination

138 Sessions from a single rat

Click Frequency Discrimination

138 Sessions from a single rat

Each circle is data from one session

Click Frequency Discrimination

138 Sessions from a single rat

Each circle is data from one session

Population Summary - 20 rats

Each thin line is one rat's performance
Thick line is the mean across rats

Inactivation of FOF with muscimol

Inactivation of FOF with muscimol

125

50

20

Non-Memory Trials

Memory Trials

Non-Memory Trials

Memory Trials

125

50

20

Inactivation of FOF with muscimol

Summary of muscimol results

n=20; 5 rats x 4 sessions per rat

Summary of muscimol results

n=20; 5 rats x 4 sessions per rat

Population PSTH of Ipsi Preferring Cells (n=43)

36% of 262 cells in FOF show delay period selectivity

Computing neural latency

inspired by DiCarlo and Maunsell, 2005

Computing neural latency

Computing neural latency

inspired by DiCarlo and Maunsell, 2005

Computing behavioral latency

Computing behavioral latency

Computing behavioral latency

Best example of highly correlated neural and behavioral latency

Neural / behavioral latency population summary

Shuffled Correct Contra Memory Trials

Behavioral evidence of planning

Behavioral evidence of planning

Behavioral evidence of planning

Head orientation θ , correct Mem trials only

Timing of significant firing rate signal coincides with timing of significant differences in head orientation --

Is the FOF a simple motor area, encoding current head orientation?

Head orientation θ , correct Mem trials only

Time from Go (s)

Summary

- Rats can be trained on "cognitive control" tasks like memory-guided orienting
- Inactivation of activity in FOF with muscimol disrupts contralateral responding, especially on memory trials
- FOF neurons prospectively encode the rats response during the delay period.
- The FOF is a key cortical region for the memory/ planning of orienting head movements
- Studying decision-making in rats should allow us to bridge the gap between knowledge about rat navigation and primate decision-making

Work (ongoing and future)

- Modeling: muscimol results, contra/ipsi asymmetry
- What is the source/purpose of the heterogeneity in responses?
- How does the rat inhibit responses during the delay? Where is the sensorimotor transformation? Role for PFC?
- Saccades? Whiskers?
- Tasks to disassociate attention from responses

Acknowledgements

Carlos Brody Max Bialek

Joe Jun Bing Brunton Filip Ponulak Chuck Kopec Tim Hanks

> Glyn Brown Klaus Osorio Sergei Karnup

Happy Canada Day!

