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Learning and memory: theoretical approaches

e Choose a specific learning rule (e.g. rate-based, STDP, reward-dependent, etc)

—> Study consequences of the learning rule at the network level;

e Study optimality properties of specific networks (Elizabeth Gardner 1988)

Rather than focusing on a given learning rule, consider the space of all possible

connectivity matrices.
—> Average volume of subspace of weights that solve a particular learning task;
—> Maximal storage capacity (Gardner 1988, etc);

—> Statistics of synaptic connectivity in optimal networks
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Outline of the talk

e Characterize properties of synaptic e Compare theoretical results with avail-

connectivity in optimal networks, using able experimental data (paired record-
Gardner approach ings in slices)
— Feed-forward network (perceptron) - Cerebellum: GC — PC network

- Recurrent network - Neocortex: Pyr cell network
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Cerebellar cortex

e Involved in motor learning; cells

\M-::iulecular
e Often thought as a feedfor- ayer

ward structure;

Granular
layer
e Mossy fibers (sensory and Medullary
contextual inputs) — gran- \ e
ule cells (GCS) '. -HE;.I:utrrenlt
collaterals
e GCs — Purkinje cells (PC)

\1\ Climbing
fiber

%

through parallel fibers

e PC — motor output
(through deep cerebellar

nuclei)



Purkinje cell

e 150,000 GC — PC
synapses per PC

e thought to be a major site
of learning in cerebellum

since Marr and Albus

e known to be plastic (LTD,
LTP) since Ito
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Statistics of GC-PC connectivity

(adult rats)

GCs PC " )

e EM predicts ~ 50 % connection proba-
bility

e Electrophysiology gives less than 10 %

of detectable responses

k— detection threshold

e — more than 80% of synapses are

electrically silent!

e — why so many ‘useless’ synapses?

0 0.1 0.2 0.3 0.4
Synaptic weight w (mV)

Isope and Barbour, J Neurosci 2002



Modeling PCs as a perceptron

synaptic
weights

threshold [\

(CERN)

input patterns

A B parallel
- ] 1 fibres
IV O 31 3
- 1
I e 0
— 2
,,,,,,,,, 0 1
— 3
INE 0.
— 4
Purkinje
cell
B
0
output

Marr 1969, Albus 1971

N ~ 150,000 synapses/GC in-
puts;

sums linearly its inputs;

emits a spike if inputs > 6 ~ 10
mV (threshold)
has to learn a set of p = a/V ran-

dom uncorrelated input/output as-
sociations, G’ — P* with

— f (‘input coding level’, fraction of ac-

tive GCs in a pattern);

— f’ (output coding level’, fraction of

patterns for which PC fires);

by appropriate choice of its synap-

tic weights w; > 0.

® in arobust way (as measured by k);



Space of synaptic weights

Gardner approach

® Subspace of solutions to learning problem in w space: =

B.G*>0+k ifP*=1

w.§“<8—ﬁ; if P* =0 W

e The volume of this subspace is:

V= /dr(vﬂ) []o[er—1) (w.G" —0) - «] A7
pu=1
e Compute (log V') /N to get typical volume using replica method; W,
e Storage capacity obtained when volume goes to zero; ///é
e The distribution of weights is ///4?
P(w) = — | dr(w) d(w—w e |erP* — 1) (6.G* —0) — k ‘/
<>V/<>< >f:[ [P =1 ( )~ ~] ,%//

1



Known results on the storage capacity of the perceptron

e Unconstrained weights, f' = 0.5,k = 0 3
= Umaz = 2 (Cover 1965, Gardner 1988)

e Tradeoff between capacity and robustness
(Gardner 1988)

e Sign-constrained synapses:
= max = 1 (Amit et al 1989)
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Distribution of weights below capacity
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Theory vs experiment

Best fit parameters:

e The Purkinje cell appears to operate

near maximal capacity
a = (0.97+£0.03)a,

e Input coding level (GC activity level)
f=04%

e Output coding level (PC activity level)
f'=37%

= Sparse input and non-sparse

# synapses

output—ratio ~100

OS 0.1 O:Zh 0.3 V0-4 e Robustness parameter
ynaptic weight w (mV) e 0.8mV



Towards more realistic models of Purkinje cells
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Towards more realistic models of Purkinje cells

Standard stimuli

x2T/x2BG x0T/x0BG
Head
10° per s |

e Analog (instantaneous firing rate) in-
puts and outputs?

e Temporal correlations?
0 u—..“

Ke et al 2009

ﬂ| e Bistability of Purkinje cells?
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Analog inputs/output

e Each granule cell has a firing rate drawn from a distribution with mean (¢, variance

2.
Ocrs

e Purkinje cell has a required total input current drawn from a distribution with mean u p,

variance 0%;

e Firing rate of PC: monotonically increasing function oinput current

e Constraints imposed by learning are no longer inequalities, but rather equalities:

W.GH =0 + P+



Capacity and distribution of weights

e Capacity depends on a single parameter
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(90'G

e Distribution of weights identical to binary perceptron;

e Fraction of silent synapses = 1— Capacity
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Optimal statistics of inputs/outputs

e To optimize capacity, 7 = (0% u%,)/(6%0%) should be as small as possible;

e Distribution of GC firing rate maximizing JG/,uG is a binary sparse distribution, with
cells silent most of the time, firing at maximal frequency with small probability.

e Fits with intracellular recordings of GCs in vivo (Chadderton et al 2004): GCs have very
low spontaneous rates (< 1Hz) but occasionnally respond with brief high frequency

bursts to external stimulation.

e Distribution of PC firing rate: o p should be small to minimize =y, but should be larger

than intrinsic noise 0 = optimum at some finite value of o p, depending on o.



Learning sequences with temporal correlations

e Sequences— Markov chains with temporal correlations ¢;,,, Cout-

1) = f+cn(Gi(t) - f)
1) = f'4cout(P(t) = f)

Prob(G;(t + 1)
Prob(P(t + 1)

e Correlations do not affect capacity/distribution of weights when ¢;,, = 0 or ¢y = 0

e Capacity increases with correlations when ¢;,, ~ Cout



Impact of bistability on storage of correlated sequences
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Impact of bistability on storage of correlated sequences

Output

Input
2 0.9 . | T I
2
15 g 08
3 2
o e 0.7
S RZ
= = 0.6
N g
0.5 § 0.5
i 1 &
| | | | 1
0 0.4
0 1 2 3 0 1 2 3

half-width of bistability range W half-width of bistability range



Conclusions 1
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Conclusions 1

e Large fraction of silent synapses needed for optimizing information storage;
e Fraction of silent synapses increases with robustness

e Details of the model affect quantitatively storage capacity, and the fraction of silent

synapses, but not the qualitative shape of the weights distribution;



pyramidal cell network

Neocortex




A simple attractor neural network model

Fully connected network of NV > 1

binary neurons;

Stores a large number (p = a.V)
of fixed point attractor states (stable

representations of external stimuli)

Each attractor state: random binary
pattern with coding level f

Robustness level kK (measures size
of basin of attraction of each attrac-

tor);



Questions

When the network stores many attractors (close to its maximal capacity, for a given

robustness level):

e What is the distribution of synaptic weights

e What is the distribution of specific synaptic motifs (pairs, triplets, etc)
P(wz-j, ”LU]Z){?

P(wij, Wyj4, Wik, - - )?



Distribution of weights

e For each neuron, finding synaptic

weights consistent with stored attrac-

®
@ ®
@ @ 5 P tors is equivalent to perceptron problem
0
1
0
1
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Distribution of weights: theory vs experiment

e Large fraction of zero weight synapses is consistent with data:

— Anatomy: nearby pyramidal cells are potentially fully connected (Kalisman et al
2005)

— Electrophysiology: nearby pyramidal cells have connection probability of ~ 10%
(Mason et al 1991, Markram et al 1997, Sjostrom et al 2001, Holmgren et al 2003)



Distribution of weights: theory vs experiment

e Large fraction of zero weight synapses is consistent with data:

— Anatomy: nearby pyramidal cells are potentially fully connected (Kalisman et al
2005)

— Electrophysiology: nearby pyramidal cells have connection probability of ~ 10%
(Mason et al 1991, Markram et al 1997, Sjostrom et al 2001, Holmgren et al 2003)

— Large fraction of zero-weight (‘potential’ or ‘silent’) synapses.



Distribution of synaptic weights in cortex
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Sjostrom data vs theory

200 —

Number of synapses

EPSP amplitude (mV)

Sjostrom et al 2001; Song et al 2005



Two-neuron connectivity in an attractor network

e Fully connected network of N = 1000 neurons;

e Storing random patterns, using perceptron learning algorithm independently for each

neuron,
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Two-neuron connectivity patterns in cortex

A Null hypothesis assumes independent connection probabilities
A P=0.116 B A P=0.116x0.116=0.0135 B
¢ > St————
A p=16 B
ot——
B
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'8 ] 218
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Song et al 2005



Two-neuron connectivity: theory vs experiment

| o p=0
0.8 — o p=2 See also:
: -
. ® p=6 e Markram et al (1997) rat L5 so-
—|— Sjostrom data
matosensory cortex: 3 x random;

e Wang et al (2006)
— rat PFC: 4 x random;

— rat visual cortex: 2 x random;

Bidirectional connection probability

e Lefort et al (2009) mouse barrel

cortex: ~ random
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Bidirectional vs unidirectional connections
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Conclusions

e A network optimized to store a large number of attractors has
— Sparse connectivity matrix;
— The sparser the matrix, the more robust the network;

— Strong overrepresentation of bidirectional connections, compared to a random

network

— Optimal connectivity matrix approximately half-way between fully random and fully

symmetric network

e All these features are consistent with the available statistics of connectivity in cortex



Conclusions

e A network optimized to store a large number of attractors has
— Sparse connectivity matrix;
— The sparser the matrix, the more robust the network;

— Strong overrepresentation of bidirectional connections, compared to a random

network
— Optimal connectivity matrix approximately half-way between fully random and fully
symmetric network

e All these features are consistent with the available statistics of connectivity in cortex

e A network optimized to store a large number of sequences have
— Again a sparse connectivity matrix;

— No overrepresentation of bidirectional connections
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