Statistical properties of network connectivity optimizing information storage

Nicolas Brunel

Laboratory of Neurophysics and Physiology

Laboratoire de Neurophysique et Physiologie UMR 8119 CNRS - Université René Descartes 45 rue des Saints Pères 75270 Paris cedex 06, France Tel. (33) 1 42 86 21 38 Fax (33) 1 49 27 90 62

Learning and memory: theoretical approaches

• Choose a specific learning rule (e.g. rate-based, STDP, reward-dependent, etc)

Learning and memory: theoretical approaches

• Choose a specific learning rule (e.g. rate-based, STDP, reward-dependent, etc)

 \Rightarrow Study consequences of the learning rule at the network level;

Learning and memory: theoretical approaches

- Choose a specific learning rule (e.g. rate-based, STDP, reward-dependent, etc)
 ⇒ Study consequences of the learning rule at the network level;
- Study optimality properties of specific networks (Elizabeth Gardner 1988) Rather than focusing on a given learning rule, consider the space of all possible connectivity matrices.
 - \Rightarrow Average volume of subspace of weights that solve a particular learning task;
 - \Rightarrow Maximal storage capacity (Gardner 1988, etc);
 - \Rightarrow Statistics of synaptic connectivity in optimal networks

 Characterize properties of synaptic connectivity in optimal networks, using Gardner approach

- Characterize properties of synaptic connectivity in optimal networks, using Gardner approach
- Compare theoretical results with available experimental data (paired recordings in slices)

- Characterize properties of synaptic connectivity in optimal networks, using Gardner approach
- Feed-forward network (perceptron)

- Compare theoretical results with available experimental data (paired recordings in slices)
- Cerebellum: GC \rightarrow PC network

- Characterize properties of synaptic connectivity in optimal networks, using Gardner approach
- Feed-forward network (perceptron)

- Recurrent network

- Compare theoretical results with available experimental data (paired recordings in slices)
- Cerebellum: GC \rightarrow PC network

- Neocortex: Pyr cell network

Cerebellar cortex

- Involved in motor learning;
- Often thought as a feedforward structure;
- Mossy fibers (sensory and contextual inputs) → granule cells (GCs)
- GCs → Purkinje cells (PC) through parallel fibers
- PC → motor output (through deep cerebellar nuclei)

Purkinje cell

- 150,000 GC \rightarrow PC synapses per PC
- thought to be a major site of learning in cerebellum since Marr and Albus
- known to be plastic (LTD, LTP) since Ito

(adult rats)

(adult rats)

(adult rats)

Isope and Barbour, J Neurosci 2002

• EM predicts \sim 50 % connection probability

(adult rats)

- EM predicts \sim 50 % connection probability
- Electrophysiology gives less than 10% of detectable responses

(adult rats)

- EM predicts \sim 50 % connection probability
- Electrophysiology gives less than 10% of detectable responses
- → more than 80% of synapses are electrically silent!

(adult rats)

- EM predicts \sim 50 % connection probability
- Electrophysiology gives less than 10% of detectable responses
- → more than 80% of synapses are electrically silent!
- \Rightarrow why so many 'useless' synapses?

Modeling PCs as a perceptron

Marr 1969, Albus 1971

- $N \sim 150,000$ synapses/GC inputs;
- sums linearly its inputs;
- emits a spike if inputs > $\theta \sim 10$ mV (threshold)
- has to learn a set of $p\equiv \alpha N$ random uncorrelated input/output associations, $G^{\mu}_i\to P^{\mu}$ with
 - f ('input coding level', fraction of active GCs in a pattern);
 - f' ('output coding level', fraction of patterns for which PC fires);
- by appropriate choice of its synaptic weights $w_i \ge 0$.
- in a robust way (as measured by κ);

Gardner approach

• Subspace of solutions to learning problem in *w* space:

$$\vec{w}.\vec{G}^{\mu} > \theta + \kappa \text{ if } P^{\mu} = 1$$

 $\vec{w}.\vec{G}^{\mu} < \theta - \kappa \text{ if } P^{\mu} = 0$

• The volume of this subspace is:

$$V = \int dr(\vec{w}) \prod_{\mu=1}^{p} \Theta \left[(2P^{\mu} - 1) \left(\vec{w}.\vec{G}^{\mu} - \theta \right) - \kappa \right]$$

- Compute $\langle \log V \rangle / N$ to get typical volume using replica method;
- Storage capacity obtained when volume goes to zero;
- The distribution of weights is

$$P(w) = \frac{1}{V} \int dr(\vec{w}) \,\delta(w - w_1) \prod_{\mu=1}^p \Theta\left[(2P^{\mu} - 1) \left(\vec{w}.\vec{G}^{\mu} - \theta \right) - \kappa \right]$$

Space of synaptic weights

Known results on the storage capacity of the perceptron

- Unconstrained weights, f' = 0.5, $\kappa = 0$ $\Rightarrow \alpha_{max} = 2$ (Cover 1965, Gardner 1988)
- Tradeoff between capacity and robustness (Gardner 1988)
- Sign-constrained synapses:
 - $\Rightarrow \alpha_{max} = 1$ (Amit et al 1989)

The synaptic weight distribution at maximal capacity

At maximal capacity:

$$P(w_i = W) = S\delta(W) + \frac{1}{\sqrt{2\pi}\sigma_W} \exp\left[-\frac{1}{2}\left(\frac{W}{\sigma_W} + W_0(S)\right)^2\right]\Theta(W)$$

The synaptic weight distribution at maximal capacity

At maximal capacity:

$$P(w_i = W) = S\delta(W) + \frac{1}{\sqrt{2\pi}\sigma_W} \exp\left[-\frac{1}{2}\left(\frac{W}{\sigma_W} + W_0(S)\right)^2\right]\Theta(W)$$

Distribution characterized by

• The fraction of 'silent' synapses *S* depends on robustness parameter

$$\rho = \frac{\kappa}{\overline{W}\sqrt{f(1-f)N}}$$

where $\overline{W} \sim \theta/fN$ is the average synaptic weight

• The width of the truncated Gaussian σ_W depends on S and \overline{W} .

Distribution of weights below capacity

Best fit parameters:

• The Purkinje cell appears to operate near maximal capacity $\alpha = (0.97 \pm 0.03)\alpha_c$

Best fit parameters:

- The Purkinje cell appears to operate near maximal capacity $\alpha = (0.97 \pm 0.03)\alpha_c$
- Input coding level (GC activity level) f = 0.4 %

Best fit parameters:

- The Purkinje cell appears to operate near maximal capacity $\alpha = (0.97 \pm 0.03) \alpha_c$
- Input coding level (GC activity level) f = 0.4 %
- Output coding level (PC activity level) f' = 37 %

Best fit parameters:

- The Purkinje cell appears to operate near maximal capacity $\alpha = (0.97 \pm 0.03) \alpha_c$
- Input coding level (GC activity level) f = 0.4 %
- Output coding level (PC activity level) f' = 37 %
 - \Rightarrow Sparse input and non-sparse output—ratio \sim 100
- Robustness parameter $\kappa = 0.8 \,\mathrm{mV}$

Towards more realistic models of Purkinje cells

Ke et al 2009

- Analog (instantaneous firing rate) inputs and outputs?
- Temporal correlations?

Towards more realistic models of Purkinje cells

- Analog (instantaneous firing rate) inputs and outputs?
- Temporal correlations?

- Bistability of Purkinje cells?
- Loewenstein et al 2005

Analog inputs/output

- Each granule cell has a firing rate drawn from a distribution with mean μ_G , variance σ_G^2 ;
- Purkinje cell has a required total input current drawn from a distribution with mean μ_P , variance σ_P^2 ;
- Firing rate of PC: monotonically increasing function oinput current
- Constraints imposed by learning are no longer inequalities, but rather equalities:

$$\vec{w}.\vec{G}^{\mu} = \theta + P^{\mu}$$

Capacity and distribution of weights

• Capacity depends on a single parameter

$$\gamma = \frac{\sigma_P^2 \mu_G^2}{\theta^2 \sigma_G^2}$$

- Distribution of weights identical to binary perceptron;
- Fraction of silent synapses = 1- Capacity

Optimal statistics of inputs/outputs

- To optimize capacity, $\gamma = (\sigma_P^2 \mu_G^2)/(\theta^2 \sigma_G^2)$ should be as small as possible;
- Distribution of GC firing rate maximizing σ_G/μ_G is a binary sparse distribution, with cells silent most of the time, firing at maximal frequency with small probability.
- Fits with intracellular recordings of GCs in vivo (Chadderton et al 2004): GCs have very low spontaneous rates ($\ll 1$ Hz) but occasionnally respond with brief high frequency bursts to external stimulation.
- Distribution of PC firing rate: σ_P should be small to minimize γ , but should be larger than intrinsic noise $\sigma \Rightarrow$ optimum at some finite value of σ_P , depending on σ .

Learning sequences with temporal correlations

• Sequences = Markov chains with temporal correlations c_{in} , c_{out} .

$$Prob(G_i(t+1) = 1) = f + c_{in}(G_i(t) - f)$$
(1)

$$Prob(P(t+1) = 1) = f' + c_{out}(P(t) - f')$$
(2)

- Correlations do not affect capacity/distribution of weights when $c_{in} = 0$ or $c_{out} = 0$
- Capacity increases with correlations when $c_{in} \sim c_{out}$

Impact of bistability on storage of correlated sequences

Impact of bistability on storage of correlated sequences

Conclusions 1

- Large fraction of silent synapses needed for optimizing information storage;
- Fraction of silent synapses increases with robustness

Conclusions 1

- Large fraction of silent synapses needed for optimizing information storage;
- Fraction of silent synapses increases with robustness
- Details of the model affect quantitatively storage capacity, and the fraction of silent synapses, but not the qualitative shape of the weights distribution;

Neocortex: pyramidal cell network

A simple attractor neural network model

- Fully connected network of $N \gg 1$ binary neurons;
- Stores a large number ($p \equiv \alpha N$) of fixed point attractor states (stable representations of external stimuli)
- Each attractor state: random binary pattern with coding level f
- Robustness level κ (measures size of basin of attraction of each attractor);

Questions

When the network stores many attractors (close to its maximal capacity, for a given robustness level):

• What is the distribution of synaptic weights

 $P(w_{ij})?$

• What is the distribution of specific synaptic motifs (pairs, triplets, etc)

 $P(w_{ij}, w_{ji})?$

 $P(w_{ij}, w_{ji}, w_{ik}, \ldots)?$

Distribution of weights

• For each neuron, finding synaptic weights consistent with stored attractors is equivalent to perceptron problem

The synaptic weight distribution at maximal capacity

At maximal capacity:

$$P(w_i = W) = S\delta(W) + \frac{1}{\sqrt{2\pi}\sigma_W} \exp\left[-\frac{1}{2}\left(\frac{W}{\sigma_W} + W_0(S)\right)^2\right]\Theta(W)$$

The synaptic weight distribution at maximal capacity

At maximal capacity:

$$P(w_i = W) = \frac{S\delta(W)}{\sqrt{2\pi\sigma_W}} \exp\left[-\frac{1}{2}\left(\frac{W}{\sigma_W} + W_0(S)\right)^2\right]\Theta(W)$$

Distribution characterized by

• The fraction of zero weight synapses ${\cal S}$ depends on robustness parameter

$$\rho = \frac{\kappa}{\overline{W}\sqrt{f(1-f)N}}$$

where $\overline{W} \sim \theta/fN$ is the average synaptic weight

• The width of the truncated Gaussian σ_W depends on S and \overline{W} .

Distribution of weights: theory vs experiment

- Large fraction of zero weight synapses is consistent with data:
 - Anatomy: nearby pyramidal cells are potentially fully connected (Kalisman et al 2005)
 - Electrophysiology: nearby pyramidal cells have connection probability of $\sim 10\%$ (Mason et al 1991, Markram et al 1997, Sjostrom et al 2001, Holmgren et al 2003)

Distribution of weights: theory vs experiment

- Large fraction of zero weight synapses is consistent with data:
 - Anatomy: nearby pyramidal cells are potentially fully connected (Kalisman et al 2005)
 - Electrophysiology: nearby pyramidal cells have connection probability of $\sim 10\%$ (Mason et al 1991, Markram et al 1997, Sjostrom et al 2001, Holmgren et al 2003)
 - \Rightarrow Large fraction of zero-weight ('potential' or 'silent') synapses.

Distribution of synaptic weights in cortex

Mason et al 1991; Markram et al 1997; Sjostrom et al 2001; Holmgren et al 2003; Feldmeyer et al 2003; Frick et al 2007

Sjostrom data vs theory

Two-neuron connectivity in an attractor network

- Fully connected network of N = 1000 neurons;
- Storing random patterns, using perceptron learning algorithm independently for each neuron;

Two-neuron connectivity patterns in cortex

Song et al 2005

Two-neuron connectivity: theory vs experiment

See also:

- Markram et al (1997) rat L5 somatosensory cortex: 3 x random;
- Wang et al (2006)
 - rat PFC: 4 x random;
 - rat visual cortex: 2 x random;
- Lefort et al (2009) mouse barrel cortex: \sim random

Bidirectional vs unidirectional connections

Conclusions

- A network optimized to store a large number of attractors has
 - Sparse connectivity matrix;
 - The sparser the matrix, the more robust the network;
 - Strong overrepresentation of bidirectional connections, compared to a random network
 - Optimal connectivity matrix approximately half-way between fully random and fully symmetric network
- All these features are consistent with the available statistics of connectivity in cortex

Conclusions

- A network optimized to store a large number of attractors has
 - Sparse connectivity matrix;
 - The sparser the matrix, the more robust the network;
 - Strong overrepresentation of bidirectional connections, compared to a random network
 - Optimal connectivity matrix approximately half-way between fully random and fully symmetric network
- All these features are consistent with the available statistics of connectivity in cortex
- A network optimized to store a large number of sequences have
 - Again a sparse connectivity matrix;
 - No overrepresentation of bidirectional connections

Collaborators

ENS, Neurobiology Dept:

- Boris Barbour
- Philippe Isope
- ENS, Physics Dept
 - Vincent Hakim
 - Jean-Pierre Nadal

Université Paris Descartes

• Claudia Clopath