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• Choose a specific learning rule (e.g. rate-based, STDP, reward-dependent, etc)

⇒ Study consequences of the learning rule at the network level;

• Study optimality properties of specific networks (Elizabeth Gardner 1988)

Rather than focusing on a given learning rule, consider the space of all possible

connectivity matrices.

⇒ Average volume of subspace of weights that solve a particular learning task;

⇒ Maximal storage capacity (Gardner 1988, etc);

⇒ Statistics of synaptic connectivity in optimal networks
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Outline of the talk

• Characterize properties of synaptic

connectivity in optimal networks, using

Gardner approach

• Compare theoretical results with avail-

able experimental data (paired record-

ings in slices)

– Feed-forward network (perceptron) - Cerebellum: GC→ PC network

- Recurrent network - Neocortex: Pyr cell network



Cerebellar cortex

• Involved in motor learning;

• Often thought as a feedfor-

ward structure;

• Mossy fibers (sensory and

contextual inputs) → gran-

ule cells (GCs)

• GCs→ Purkinje cells (PC)

through parallel fibers

• PC → motor output

(through deep cerebellar

nuclei)



Purkinje cell

• 150,000 GC → PC

synapses per PC

• thought to be a major site

of learning in cerebellum

since Marr and Albus

• known to be plastic (LTD,

LTP) since Ito
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Statistics of GC-PC connectivity

(adult rats)
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• EM predicts ∼ 50 % connection proba-

bility

• Electrophysiology gives less than 10 %

of detectable responses

• ⇒ more than 80 % of synapses are

electrically silent!

• ⇒ why so many ‘useless’ synapses?



Modeling PCs as a perceptron
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• N ∼ 150, 000 synapses/GC in-

puts;

• sums linearly its inputs;

• emits a spike if inputs > θ ∼ 10
mV (threshold)

• has to learn a set of p ≡ αN ran-

dom uncorrelated input/output as-

sociations, Gµ
i → Pµ with

– f (‘input coding level’, fraction of ac-

tive GCs in a pattern);

– f ′ (‘output coding level’, fraction of

patterns for which PC fires);

• by appropriate choice of its synap-

tic weights wi ≥ 0.

• in a robust way (as measured by κ);



Gardner approach

• Subspace of solutions to learning problem in w space:

~w. ~Gµ > θ + κ if P µ = 1

~w. ~Gµ < θ − κ if P µ = 0

• The volume of this subspace is:

V =

∫
dr(~w)

p∏
µ=1

Θ
[
(2P µ − 1)

(
~w. ~Gµ − θ

)
− κ

]
• Compute 〈log V 〉/N to get typical volume using replica method;

• Storage capacity obtained when volume goes to zero;

• The distribution of weights is

P (w) =
1

V

∫
dr(~w) δ(w−w1)

p∏
µ=1

Θ
[
(2P µ − 1)

(
~w. ~Gµ − θ

)
− κ

]



Known results on the storage capacity of the perceptron

• Unconstrained weights, f ′ = 0.5, κ = 0
⇒αmax = 2 (Cover 1965, Gardner 1988)

• Tradeoff between capacity and robustness

(Gardner 1988)

• Sign-constrained synapses:

⇒ αmax = 1 (Amit et al 1989)
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The synaptic weight distribution at maximal capacity

At maximal capacity:

P (wi = W ) = Sδ(W ) +
1√

2πσW

exp

[
−1

2

(
W

σW
+ W0(S)

)2
]

Θ(W )

Distribution characterized by

• The fraction of ‘silent’ synapses S depends

on robustness parameter

ρ =
κ

W
√

f(1− f)N

where W ∼ θ/fN is the average synap-

tic weight

• The width of the truncated Gaussian σW

depends on S and W .



Distribution of weights below capacity
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Theory vs experiment

Best fit parameters:

• The Purkinje cell appears to operate

near maximal capacity

α = (0.97± 0.03)αc

• Input coding level (GC activity level)

f = 0.4 %

• Output coding level (PC activity level)

f ′ = 37 %

⇒ Sparse input and non-sparse

output—ratio∼100

• Robustness parameter

κ = 0.8 mV
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Towards more realistic models of Purkinje cells

Ke et al 2009

• Analog (instantaneous firing rate) in-

puts and outputs?

• Temporal correlations?

Loewenstein et al 2005

• Bistability of Purkinje cells?



Analog inputs/output

• Each granule cell has a firing rate drawn from a distribution with mean µG, variance

σ2
G;

• Purkinje cell has a required total input current drawn from a distribution with mean µP ,

variance σ2
P ;

• Firing rate of PC: monotonically increasing function oinput current

• Constraints imposed by learning are no longer inequalities, but rather equalities:

~w. ~Gµ = θ + Pµ



Capacity and distribution of weights

• Capacity depends on a single parameter

γ =
σ2

P µ2
G

θ2σ2
G

• Distribution of weights identical to binary perceptron;

• Fraction of silent synapses = 1− Capacity



Optimal statistics of inputs/outputs

• To optimize capacity, γ = (σ2
P µ2

G)/(θ2σ2
G) should be as small as possible;

• Distribution of GC firing rate maximizing σG/µG is a binary sparse distribution, with

cells silent most of the time, firing at maximal frequency with small probability.

• Fits with intracellular recordings of GCs in vivo (Chadderton et al 2004): GCs have very

low spontaneous rates (� 1Hz) but occasionnally respond with brief high frequency

bursts to external stimulation.

• Distribution of PC firing rate: σP should be small to minimize γ, but should be larger

than intrinsic noise σ⇒ optimum at some finite value of σP , depending on σ.



Learning sequences with temporal correlations

• Sequences= Markov chains with temporal correlations cin, cout.

Prob(Gi(t + 1) = 1) = f + cin(Gi(t)− f) (1)

Prob(P (t + 1) = 1) = f ′ + cout(P (t)− f ′) (2)

• Correlations do not affect capacity/distribution of weights when cin = 0 or cout = 0

• Capacity increases with correlations when cin ∼ cout
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Conclusions 1

• Large fraction of silent synapses needed for optimizing information storage;

• Fraction of silent synapses increases with robustness

• Details of the model affect quantitatively storage capacity, and the fraction of silent

synapses, but not the qualitative shape of the weights distribution;



Neocortex: pyramidal cell network



A simple attractor neural network model

• Fully connected network of N � 1
binary neurons;

• Stores a large number (p ≡ αN )

of fixed point attractor states (stable

representations of external stimuli)

• Each attractor state: random binary

pattern with coding level f

• Robustness level κ (measures size

of basin of attraction of each attrac-

tor);



Questions

When the network stores many attractors (close to its maximal capacity, for a given

robustness level):

• What is the distribution of synaptic weights

P (wij)?

• What is the distribution of specific synaptic motifs (pairs, triplets, etc)

P (wij , wji)?

P (wij , wji, wik, . . .)?



Distribution of weights

• For each neuron, finding synaptic

weights consistent with stored attrac-

tors is equivalent to perceptron problem
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The synaptic weight distribution at maximal capacity

At maximal capacity:

P (wi = W ) = Sδ(W ) +
1√

2πσW

exp

[
−1

2

(
W

σW
+ W0(S)

)2
]

Θ(W )

Distribution characterized by

• The fraction of zero weight synapses S de-

pends on robustness parameter

ρ =
κ

W
√

f(1− f)N

where W ∼ θ/fN is the average synap-

tic weight

• The width of the truncated Gaussian σW

depends on S and W .



Distribution of weights: theory vs experiment

• Large fraction of zero weight synapses is consistent with data:

– Anatomy: nearby pyramidal cells are potentially fully connected (Kalisman et al

2005)

– Electrophysiology: nearby pyramidal cells have connection probability of∼ 10%
(Mason et al 1991, Markram et al 1997, Sjostrom et al 2001, Holmgren et al 2003)



Distribution of weights: theory vs experiment

• Large fraction of zero weight synapses is consistent with data:

– Anatomy: nearby pyramidal cells are potentially fully connected (Kalisman et al

2005)

– Electrophysiology: nearby pyramidal cells have connection probability of∼ 10%
(Mason et al 1991, Markram et al 1997, Sjostrom et al 2001, Holmgren et al 2003)

⇒ Large fraction of zero-weight (‘potential’ or ‘silent’) synapses.



Distribution of synaptic weights in cortex

Mason et al 1991; Markram et al 1997; Sjostrom et al 2001; Holmgren et al 2003; Feldmeyer et al

2003; Frick et al 2007



Sjostrom data vs theory

Sjostrom et al 2001; Song et al 2005



Two-neuron connectivity in an attractor network

• Fully connected network of N = 1000 neurons;

• Storing random patterns, using perceptron learning algorithm independently for each

neuron;
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Two-neuron connectivity patterns in cortex

Song et al 2005



Two-neuron connectivity: theory vs experiment
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See also:

• Markram et al (1997) rat L5 so-

matosensory cortex: 3 x random;

• Wang et al (2006)

– rat PFC: 4 x random;

– rat visual cortex: 2 x random;

• Lefort et al (2009) mouse barrel

cortex: ∼ random



Bidirectional vs unidirectional connections
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– The sparser the matrix, the more robust the network;

– Strong overrepresentation of bidirectional connections, compared to a random
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– Optimal connectivity matrix approximately half-way between fully random and fully

symmetric network

• All these features are consistent with the available statistics of connectivity in cortex



Conclusions

• A network optimized to store a large number of attractors has

– Sparse connectivity matrix;

– The sparser the matrix, the more robust the network;

– Strong overrepresentation of bidirectional connections, compared to a random

network

– Optimal connectivity matrix approximately half-way between fully random and fully

symmetric network

• All these features are consistent with the available statistics of connectivity in cortex

• A network optimized to store a large number of sequences have

– Again a sparse connectivity matrix;

– No overrepresentation of bidirectional connections
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