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The goal: from spikes to firing rate
Schematic: Can we predict the firing rate of a Previous efforts: Solving for the firing rate requires tracking the voltage distribution Why this problem is hard: Boundary An approximation that simplifies
neuron as a simple function of an arbitrary with a Fokker-Planck equation. The boundary conditions make this difficult to solve. conditions make this difficult to solve. the boundary conditions:
. L 5
time-varying input: The Fokker-Planck equation for the standard Integrate-
and-Fire neuron is: If we think of voltage as a periodic variable and allow
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E Fokker-Planck operator for the constant-leak IAF  inginputs of small amplitude. Approximating the firing rate dy- with the boundary condition that:
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g . n#0 they find that the linear response function is: tion makes the FP equation difficult to Isolve.
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where U (y, ®) is a combinations of hypergeometric functions. Al-

Sharp Changes In iInput cause transient Synch rony. though this solution is quite general, the equations are extremely
unfriendly. This is only barely tractable for large network simula-

while a simple rate model always exponentially g J
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relaxes toward steady-state.
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Approach: assuming a simple form for P(v) Sample Results Extensions: A Simple Circuit Model
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Formulating the model: If we assume P(v) to be a Gaussian on a ring (von Mises distribution),

U SRR M b o Starting with a classic linear rate network
we can attempt to formulate a model by describing the dynamics of the voltage moments >0l : - - . . o the Wilson-Cowan model
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If the input is significantly below threshold, then thresh- If the input is significantly above threshold, a leaky

where each rate equation is now a function
old has a minimal effect on the voltage distribution model and a constant leak model behave similarly

>

of the underlying voltage distribution:
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Temporal dynamics of the moments: Plugging in the Fokker-Planck equation into the right-hand side of the tme (ms) matches the parameter space REERINEICN
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