
Modeling Firing Rate Dynamics

References:
Fusi S, Mattia M. Collecctive Behavior of Networks with Linear (VLSI) Integrate-and-Fire Neurons.  Neural  
 Computation, 1999.
Brunel, N. Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons. J. Physiol.  
 (Paris), 2000.
Brunel N, Hakim V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates.    
 Neural Computation, 1999.
Ermentrout and Kopell.  Parabolic Bursting in an Excitable System Coupled With a Slow Oscilation.  SIAM J  
 Appl. Math 1986.
Mattia M, Del Giudice P.  Population dynamics of interacting spiking neurons.  Phys. Rev. E., 2002.
Wilson, H.R. & Cowan, J.D. Excitatory and inhibitory interactions in localized populations of model neurons.  
 Biophys. J., 1972.

Comparing FI curves:

The goal: from spikes to firing rate

Evan S. Schaffer & L.F. Abbott
Swartz Center for Theoretical Neuroscience, Dept. of Neuroscience, Columbia University

Schematic:  Can we predict the firing rate of a 
neuron as a simple function of an arbitrary 
time-varying input?

Previous efforts: Solving for the firing rate requires tracking the voltage distribution 
with a Fokker-Planck equation.  The boundary conditions make this difficult to solve. 

An approximation that simplifies 
the boundary conditions:

Formulating the model:  If we assume P(v) to be a Gaussian on a ring (von Mises distribution), 
we can attempt to formulate a model by describing the dynamics of the voltage moments:
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Plugging in the Fokker-Planck equation into the right-hand side of the 
moment equations and computing the integrals, we have:

Temporal dynamics of the moments:

Given a mean input I and input variance 2D, the evolution of the volt-
age probability density is described by a Fokker-Planck equation:

,

Brunel and Hakim use an expansion around the steady-state solu-
tion to obtain a linear approximation for the response to oscillat-
ing inputs of small amplitude.  Approximating the firing rate dy-
namics ν(t) as:

they find that the linear response function is:

where U (y, ω) is a combinations of hypergeometric functions.  Al-
though this solution is quite general, the equations are extremely 
unfriendly.  This is only barely tractable for large network simula-
tions, let alone any anayltic work.   
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Approach: assuming a  simple form for P(v) Sample Results Extensions: A Simple Circuit Model

Why this problem is hard: Boundary 
conditions make this difficult to solve. 

If we think of voltage as a periodic variable and allow 
�ow in either direction across threshold, the dynamics 
are e�ectively unchanged, provided that:

Starting with a classic linear rate network, 
the Wilson-Cowan model:

where each rate equation is now a function 
of  the underlying voltage distribution:

We want to ask what firing 
regimes are possible.  In principle 
this should make possible firing 
regimes of synchrony/asynchrony 
and regular/irregular firing.  It 
would be nice if this qualitatively 
matches the parameter space 
outlined by Brunel (2000) for a 
network of leaky IAF neurons 
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Approximations that simplify boundary conditions:
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If the input is signi�cantly below threshold, then thresh-
old has a minimal e�ect on the voltage distribution
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If the input is signi�cantly above threshold, a leaky 
model and a constant leak model behave similarly

b
ounded leaky IAF ⇒ unbounded constant-leak IAF for I θ

unbounded leaky IAF for I θ

where for the mean dynamics, we have used the leaky model for super- 
and supra-threshold input.  We do this to avoid a discontinuity in the dy-
namics, but it comes at a cost -- in order to achieve a steady-state firing 
rate, we have to modify the rate equation.  The firing rate is given by the 
unidirectional flux at threshold, where we replace the drift term by its 
steady-state: 

Sharp changes in input cause transient synchrony.  
while a simple rate model always exponentially 
relaxes toward steady-state.
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Standard rate model
The real firing rate

Mattia and Del Giudice derive an expression for the 
eigenfunctions and (approximate) eigenvalues of the 
Fokker-Planck operator for the constant-leak IAF 
neuron.  Their solution is of the form:
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The Fokker-Planck equation for the standard Integrate-
and-Fire neuron is:

with the boundary condition that:

Intuitively, it is not surprising that this boundary condi-
tion makes the FP equation difficult to solve.
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