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Abstract

The irregular activity of neurons in the cortex [1] is thought to arise
from strong input fluctuations [2], which result from a balance between
excitatory and inhibitory synaptic inputs [3]. This is called the balanced
state of cortical networks. However, recent studies of the underlying
dynamics of the balanced state have led to contrary results, strongly
depending on the used single neuron models [3, 4].

Here, we study the network dynamics of sparsely coupled theta neurons
in the balanced state. The theta neuron model has an active spike
generating mechanism and is the standard form of type I neurons [5]. In
a random matrix approximation of the Jacobian, we derive an expression
for the mean Lyapunov exponent. By analyzing the full set of Lyapunov
exponents and the maximal Lyapunov vector in a numerically exact way,
we reveal extensive spatio-temporal deterministic chaos.

The studied networks exhibit high-dimensional chaotic attractors, giving
rise to many dynamical degrees of freedom to encode information. At
the same time, the intrinsic entropy production is surprisingly high,
limiting information processing to the immediate stimulus response.

Purely inhibitorily coupled networks

inh

Inhibitory couplings Jij = − J0√
K

balance external currents Iext > 0

Characteristics of the balanced state: a) Asynchronous and
temporally irregular firing patterns, b) Constant average network fir-
ing rate (10 ms bins), c) Strongly fluctuating membrane potentials,
d-g) Broad distributions of inter-spike intervals Tisi, coefficients of
variations cvi, firing rates νi and membrane potentials V
(parameters: N = 10000, K = 32, ν̄ = 1 Hz, J0 = 1, τm = 10ms)
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Extensive deterministic chaos: a) Full Lyapunov spectra ~λ at different average network firing rates ν̄, b)
Positive maximal Lyapunov exponents c) Negative mean Lyapunov exponents, d-f) Attractor dimension DKY

and entropy production HKS vs. system size N and network firing rates (parameters as above but N = 4096)
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Spatio-temporal chaos: a) Maximal Lyapunov vector component δφi(t) for one neuron with chaos index
ci = 1, b) Participation number P (t) = 1/

∑

i[δφ(t)]4, c) Chaos indices c2
i = Nvar[δφi(t)] vs. firing rates νi

Karhunen-Loève decomposition (a.k.a. PCA) of δ~φ(t) for 10s: d) eigenmodes, e) amplitudes, f) eigenvalues

The balanced state exhibits:

Deterministic chaos (positive and finite maximal Lyapunov exponent)

Extensive chaos (linear scaling of attractor dimension and entropy production with system size)

Spatio-temporal chaos (chaos patterns uncorrelated in space and time)

High-dimensional chaotic attractor (tenths of whole phase space)

Large entropy production 0.5 bits/spike (compared to estimated information of 0.6 to 3.2 bits/spike [7])

Model & Methods

N theta-neurons on a random graph, average indegree K << N :

τmθ̇i(t) = (1 − cos θi(t)) + Ii(t)(1 + cos θi(t))

Delta-pulse coupling Jij, no delays, constant external currents Iext:

Ii(t) = Iext +
∑

j∈pre(i)

2Jijτm δ(θj(t) − π)

Numerically exact event based simulations of analytic map of
phases ~θ between successive spikes at times {ts}
Analytic single spike Jacobian:

[D(ts)]ij =











di∗(ts) for i = j = i∗

1 − di∗(ts) for i = i∗ and j = j∗

δij otherwise

with di∗(ts) = Vi∗(t
−
s )2+Iext

Vi∗(t+s )2+Iext
, where V (t) = tanθ(t)

2

j∗ is the spiking neuron at time ts and i∗ its postsynaptic neurons

Calculation of Lyapunov exponents in the standard procedure [6]:

~λ = lim
tp→∞

1

tp
ln

(

Eig

p
∏

s=0

D(ts)

)

Entropy production (Pesin’s formula):

HKS =

λi>0
∑

i

λi

Attractor dimension (Kaplan-Yorke conjecture):

DKY = n +
Sn

|λn+1|
(for maximal n such that Sn =

∑n
i λi > 0)

Mean Lyapunov exponent from random matrix approximation:

λ̄ = Kν̄

∫

ln

[

V 2 + Iext

(V + J)2 + Iext

]

P (V )dV

Networks with excitatory and inhibitory populations
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Intra-population couplings:

JEE =
J0√
K

0.27ε JII = − J0√
K

√

1 − (0.3ε)2

Inter-population couplings:

JIE =
J0√
K

0.3ε JEI = − J0√
K

√

1 − (0.27ε)2

Temporal variance of synaptic input currents are the same as in the
purely inhibitory networks:

σ2
I = J2

0 ν̄
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Excitatory-inhibitory loop activation ε: a) Full Lyapunov spectra, b) Maximal Lyapunov exponents, c)
Attractor dimension density, d) Entropy production per spike (dashed lines from purely inhibitory networks), e)
Average network firing rate ν̄, coefficient of variation c̄v and spatial order parameter χ2 = var[θi]/[varθi

]

Activation of excitatory-inhibitory loops leads to more chaotic dynamics while the network statistics
remain unchanged, spatio-temporal and extensive character as in inhibitory networks (not shown)

Conclusion

Deterministic extensive spatio-temporal chaos in balanced neural networks of type I neurons

High dimensional chaotic attractors, providing many degrees of freedom to encode information

High entropy production limits information processing to immediate stimulus response

Outlook: How does the brain use these chaotic balanced networks?

Chaos control?

Intrinsic noise generator?
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