Extensive chaotic dynamics in neural networks in the balanced state
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Model & Methods

@ N theta-neurons on a random graph, average indegree K << N: @ Calculation of Lyapunov exponents in the standard procedure [6]:

The irregular activity of neurons in the cortex [1] is thought to arise

from strong input fluctuations [2], which result from a balance between , )
excitatory and inhibitory synaptic inputs [3]. This is called the balanced Tmbi(t) = (1 — cos0;(t)) + L;(t)(1 + cos 0;(¢)) Y~ lim 1 In (Eig H D(ts))
s=0

state o.f cortical networks. However, recent studies of the underlying @ Delta-pulse coupling J;;, no delays, constant external currents Lo ty—oo ),

dynamics of the balanced state have led to contrary results, strongly ‘ _ o

depending on the used single neuron models [3, 4]. [i(t) = Ioxt + Z 2JjTm 0(0;(t) — ) @ Entropy production (Pesin’s formula):

Here, we study the network dynamics of sparsely coupled theta neurons jepreld o Z \

in the balanced state. The theta neuron model has an active spike @ Numerically exact event based simulations of analytic map of s i :

generating mechanism and is the standard form of type | neurons [5]. In phases 0 between successive spikes at times {t;} ‘ _ _ |

a random matrix approximation of the Jacobian, we derive an expression . : : @ Attractor dimension (Kaplan-Yorke conjecture):

. @ Analytic single spike Jacobian: g

for the mean Lyapunov exponent. By analyzing the full set of Lyapunov Dy =1 - n

exponents and the maximal Lyapunov vector in a numerically exact way, di(ts) forte =79 =1" Pyt

we reveal extensive spatio-temporal deterministic chaos. [D(ts))i; = < 1 —dp(ty) fori=i*and j = j* (for maximal n such that S, = > "' \; > 0)

The studied networks exhibit high-dimensional chaotic attractors, giving 0i; otherwise @ Mean Lyapunov exponent from random matrix approximation:

rise to many dynamical degrees of freedom to encode information. At _ Vi (14 Lo o(t) _ ) V24l

the same time, the intrinsic entropy production is surprisingly high, W'th die(ts) = Vir(t5 )24 Loxe” where V(1) = tan=y A= Ku/ln V + I+ Iog P(V)dV
* _ XU _

limiting information processing to the immediate stimulus response. J" Is the spiking neuron at time £, and ¢ its postsynaptic neurons

Purely inhibitorily coupled networks Networks with excitatory and inhibitory populations
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Characteristics of the balanced state: a) Asynchronous and >0 > 0 | | | Jim = ——20.3¢ Jpr = 0 \/1 — (0.27¢)?
temporally irregular firing patterns, b) Constant average network fir- _ o) 9) | VK o VK |
ing rate (10 ms bins), c) Strongly fluctuating membrane potentials, %\.50-_ %\.50 - # - Temporal variance of synaptic input currents are the same as in the
d-g) Broad distributions of inter-spike intervals T, coefficients of >-60 - =-60 WM et _> purely inhibitory networks:
variations cuv;, firing rates v; and membrane potentials V/ 5 ' c ' 10 PV o7 = JiD
(parameters: N = 10000, K = 32, v =1 Hz, Jy =1, 7, = 10ms) t (s)

bit/spike g)

- f)
- / r .
7 ] -50 | | | | O ' |
0 02 N 08 1 0 Gy 5 0 4000 N 12000 16000 O oy, B 0 02 N 08 1 0 ¢ 1 0 0.5 1
Extensive deterministic chaos: a) Full Lyapunov spectra ) at different average network firing rates 7, b) Excitatory-inhibitory loop activation <: a) Full Lyapunov spectra, b) Maximal Lyapunov exponents, c)
Positive maximal Lyapunov exponents c) Negative mean Lyapunov exponents, d-f) Attractor dimension Dy Attractor dimension density, d) Entropy production per spike (dashed lines from purely inhibitory networks), e)
and entropy production Hg vs. system size N and network firing rates (parameters as above but N = 4096) Average network firing rate v, coefficient of variation ¢v and spatial order parameter y? = varyy,/|varg,]
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Zz ik o OMMM - @ Activation of excitatory-inhibitory loops leads to more chaotic dynamics while the network statistics
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s s m n H 21 1— 0.1- : remain unchanged, spatio-temporal and extensive character as in inhibitory networks (not shown)
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Spatio-temporal chaos: a) Maximal Lyapunov vector component d¢;(t) for one neuron with chaos index
c; = 1, b) Participation number P(t) =1/ Zi[5¢(t)]4, c) Chaos indices C@2 = Nvar[dg;(t)] vs. firing rates v, 2 Deterministic extensive spatio-temporal chaos in balanced neural networks of type | neurons

—

Karhunen-Loeve decomposition (a.k.a. PCA) of d¢(t) for 10s: d) eigenmodes, e) amplitudes, f) eigenvalues 2 High dimensional chaotic attractors, providing many degrees of freedom to encode information

High entropy production limits information processing to immediate stimulus response

Outlook: How does the brain use these chaotic balanced networks?
@ Chaos control?

@ Intrinsic noise generator?

The balanced state exhibits:

@ Deterministic chaos (positive and finite maximal Lyapunov exponent)

@ Extensive chaos (linear scaling of attractor dimension and entropy production with system size)
@ Spatio-temporal chaos (chaos patterns uncorrelated in space and time)

@ High-dimensional chaotic attractor (tenths of whole phase space)
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