Experimental evolution to probe gene networks underlying cognition in Drosophila

Mike Cressy (Josh Dubnau)

Dan Valente (Partha Mitra)

What is the goal of genetics?

- uncovering of the relationships between genotype and phenotype.
 - identification of the genetic variation that underlies phenotypic variation (e.g. in human disease)
 - understanding HOW a given genetic variant impacts phenotype

A new approach to use selective breeding to uncover mechanisms of non-linear gene interaction

- novel insight I-- Constrain genetic variability to a set of 23 informative loci with known impact on the phenotype
 - Vastly reduces complexity to an upper limit of 3²³ possible combinations.
 - Provides an opportunity for high throughput genotyping of multiple individuals
 - yields a data set that is amenable to sophisticated computational methods
- **novel insight II -- Mechanistic Anchor point** by using the selective breeding to ameliorate the phenotype of a specific gene of interest
 - provides a cell biological `anchor-point' that places gene interactions into a mechanistic context

The Constrained Genetic Variability: A collection of mutations that also disrupt memory! typical FI progeny															
					IX2	IX3	IX4	IX5	IX6	IX7	1X8	1X9	IXI0	IXII	
				, rut	2	2	2	2	2	2	2	2	2	2	
Line	name	defect	%Mem	1											
	Neviebek	Iro	24	2		0	0	0	0	0	0	0	0	0	
E0301	Diana	Im	34 40	3	0		0	0	0	0	0	0	0	0	
A0563	Umnitza	mem#1	17	4	0	0		0	0	0	0	0	0	0	
C0015	Barbos-1	mem#1	43	5	0	0	0		0	0	0	0	0	0	aa=0
C0113	Rogdai	mem#1	28	6	0		Ne	d0 to	-	nte /	đ	rtPoc	non	ulati	hrAa=1
D0077	Beck-1	mem#1	46	7	0	0	0	0	.0.			0.9		0	
D0177	Тоі	mem#1	34	8	0	0	Qt	քոյո	piş t	hat		၊၀ဂျာ၀	₽%go	us t	pr~~-~
D0417	Ruslan	mem#1	31	9	0	0	raut	hbha	n mi	itatia	n Ohi	1	tern	helle	bus
D0753	Rex	mem#1	12	10	0	0	Ð	.0	0.	0	0	0.		0	
E0011	Ch Khan	mem#1	-10		0	0	ரோ	The	lofue	T <u>2</u> 3	լ դյա	ants	0		
E1654	Chvorny	mem#1	24	12	0	0	0	0	0	0	0	0	0	0	1
E1715	Baikal	mem#1	28	13	0	0	٥	. 0.	Ω.	0	. 0.	.0	0	.0.]
E1847	Box	mem#1	39	14	0		Ag s	imple	e (mi	nđec	i) ștr	ateg	<u>A wc</u>	ulđ	þe
E3272	Nord	mem#1	47	15	0	0	to	mier	2 30 ct	rain	6 00	-h0ot	f whi	cho io	1
E3945	Premjera	mem#1	-7	16	0	0	0	0.	c 0	0.	0	0.		0	Í
E3947	Joy	mem#1	24	17	0	0	nnu	ant		ulat	aga	and	1/23	0	1
E4294	Arap	mem#1	47	18	0	0	0	0	0	0	0	0	0	0	1
A0023	Valiet-1	mem#2	57	19	0	0	0	0	Ō	0	0	0	0	0	1
D0361	Avgust	mem#2	51	20	0	Ő	0	0	0	0	0	0	Ō	0	1
E0602	Rosa	mem#2	63	21	0	0	0	0	0	0	0	0	0	0	
E3145	Dikar	mem#2	53	22	0	0	0	0	0	0	Ő	Ő	0	0	1
				23	0	0	0	0	Ō	Ō	Ō	0	Ő	0	1
				- '											-

The Constrained Genetic Variability:													
starter strains													
	Т	2	30210	4	5	6	7		1X2	123	1X6	1X7	
rut	2	2	2	2	2	2	2		2	2	2	2	1
1	2	0	0	0	0	0	0		<u> </u>	2	<u> </u>		
2	2	0	0	0	0	0	0		<u> </u>	1			
3	2	0	0	2	0	0	0			i			
4	2	0	0	2	0	0	0					İ	
5	0	2	0	0	0	0	0			0	0	0	
6	0	2	0	0	0	0	0		i	0	0	0	
7	0	2	0	0	0	0	0		I	0	0	0	22=0
8	0	2	0	0	0	0	0		I	0	0	0	
9	0	0	2	0	0	0	0		0	I	0	0	Aa=1
10	0	0	2	0	0	0	0		0	I	0	0	AA=2
11	0	0	2	0	0	0	0		0	I	0	0	
12	0	0	2	0	0	0	0		0	1	0	0	
13	0	0	0	2	0	0	0		0	0	0	0	
14	0	0	0	2	0	0	0		0	0	0	0	
15	0	0	0	0	2	0	0		0	0	0	0	
16	0	0	0	0	2	0	0		0	0	0	0	
17	0	0	0	0	2	0	0		0	0	0	0	
18	0	0	0	0	0	2	0		0	0	I	0	
19	0	0	0	0	0	2	0		0	0	I	0	
20	0	0	0	0	0	2	0		0	0	I	0	
21	0	0	0	0	0	0	2		0	0	0	1	
22	0	0	0	0	0	0	2		0	0	0		
23	0	0	0	0	0	0	2	l	0	0	0		

Conclusions

 Our approach combines the strengths of selective breeding and "suppressor screens" to uncover gene interactions capable of suppressing the learning deficit of rutabaga.
Identified 8 alleles predicted to explain the response to selection.
-validated prediction: 3 of 6 tested improve memory of rutabaga mutants.
-provides entry points for mechanistic cell biological investigation

•This data set provides a unique opportunity to investigate the landscape of higher order gene interactions.

-28 di-allele combinations among 8 alleles

-6561 total combinations

• The data output from this approach provides an opportunity to bring computational methods to bear on classical but formerly theoretical genetic notions

Acknowledgements

Collaborators

Partha Mitra

Dan Valente (Mitra lab)

Mike Cressy

Danielle Feldman Amy Altick (Former postdoc) Erik Kockenmeister (Former technician) Wanhe Li Hongtao Qin Allison Blum

