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1. Focus on the crux problem

2. Data transformations

3. New empirical results

4. View of the solution

Visual object and face recognition
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Visual object and face recognition

• Accurate
• Fast
• Tolerant to variation
• Effortless
• Critical to survival

Our mission:  Understand how the brain constructs a 
neuronal representation that underlies object recognition

 Focus the problem:  core object recognition  



The non human primate model

Dorsal visual stream

We can study that representation (and its 
precursors) at the level of neuronal spikes. 

We know where that image 
representation lives in the primate 
(Inferior temporal cortex, IT).

Ventral visual stream



Ventral visual stream

Decision 
and action

Memory

The ventral visual stream



Ventral visual stream

The ventral visual stream



The ventral visual stream

Ventral visual stream



The ventral visual stream

Ventral visual stream



Ventral visual stream

The ventral visual stream

Nature of this 
representation ?

How is that representation 
constructed ???



Our primary tools to attack this problem

Nature of this 
representation ?

How is that representation 
constructed ???
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The computational crux of object and face recognition

Poggio, Ullman, Grossberg, Edleman, Biederman, etc.
DiCarlo and Cox, TICS (2007);  Pinto, Cox, and DiCarlo, PLoS Comp Bio (2008)



The computational crux of object and face recognition

How does the brain recognize each object 
across this wide range of natural variability?

• Position
• Size
• Pose
• Illumination
• Clutter

• Other objects
• Background scene

Natural
variability

It must create an image representation 
that is selective for object identity, yet 
tolerant (“invariant”) to this variability. 

Explicit object 
representationPoggio, Ullman, Grossberg, Edleman, Biederman, etc.

DiCarlo and Cox, TICS (2007);  Pinto, Cox, and DiCarlo, PLoS Comp Bio (2008)



Any population 
representation

an object identity manifold

The computational crux of object and face recognition



A “good” population representation

individual 2
(”Joe”)

individual 1
(”Sam”)

separating 
hyperplane

DiCarlo and Cox, TICS (2007)

The computational crux of object and face recognition

Explicit object 
representation



ineffective
separating 
hyperplane

individual 2
(”Joe”)

individual 1
(”Sam”)

A “bad” population representation

DiCarlo and Cox, TICS (2007)

The computational crux of object and face recognition



(~ retinal image representation)

DiCarlo and Cox, TICS (2007);  Pinto, Cox, and DiCarlo, PLoS Comp Bio (2008)

Actual pixel representation

(Due to identity-preserving image variation.) 

object manifolds are “tangled”

The computational crux of object and face recognition



Nature of this 
representation ?

Tangled object 
information

Understanding how the brain solves object recognition



Image adapted from Hubel 1988

Background:  IT neurons are rapidly selective (among images)

e.g. Gross, Desimone, Albright, Rolls, Tanaka, Logothetis, Miyashita, Sheinberg, Connor, etc. etc.....

DiCarlo and Maunsell, Nature Neuroscience (2000)
DiCarlo and Maunsell, J Neurophysiology (2005)

Behaviorally
relevant 
analysis 
window



(n ~ 350 IT sites)

Background: object information is explicit in IT



…

Predicted object 
category

Biologically 
plausible linear 

classifiers
e.g. “human face” classifier

neuron 1

neuron 2

neuron 3

(n ~ 350 IT sites) Generalization over object 
position, scale, and clutter  

(not possible in early visual cortex)

Only a small number of 
IT neurons needed for 
real-time performance

Background: object information is explicit in IT

Hung*, Kreiman*, Poggio and DiCarlo, Science (2005); 
Li, Cox, Zoccolan & DiCarlo, J Neurophys (2009)



Understanding how the brain solves object recognition

Nature of this 
representation ?

Tangled object 
information

Explicit object 
representation

?

How is the IT representation 
constructed ???

- Focus.
- First spikes.
- No binding



Tangled object 
information

Understanding how the brain solves object recognition

image data in     
input representation

image data transformed to 
new representation

“A”
“B”

temporal conti guity

Explicit object 
representation

?
Innate or learned ?

How is the IT representation 
constructed ???



The temporal contiguity of natural experience is a gold mine for learning

Position

Time }same 
object

Pose

Size

Foldiak, 1991; 
Wallis & Rolls, 1997; 
Wallis & Bulthoff, 2001; 
Wiskott & Sejnowski, 2002; 
Fiser and Aslin, 2002;
Perry, Rolls, Stringer, 2006; 
Wyss, Konig, Verschure, 2006; 
Sprekeler, Michaelis, Wiskott, 2007; 
Masquelier & Thorpe, 2007; 
Masquelier, Serre, Thorpe, Poggio, 2008
etc.

Hypothesis:  the ventral visual stream uses the 
temporal contiguity of natural visual experience to 
learn to construct explicit object representation



Start simple:   focus on position tolerance (“invariance”)



Learn 
position 
tolerance?

 Natural visual experience and position tolerance (“invariance”)

short
time

Unsupervised
retinal 
experience:

Retinal image:

Central retinal 
image:



Cox, Meier, Oertelt and DiCarlo. Nature Neuroscience (2005)

Visual space

Experimental rationale to test temporal contiguity* theories of invariance



Cox, Meier, Oertelt and DiCarlo. Nature Neuroscience (2005)

Visual space

Experimental rationale to test temporal contiguity* theories of invariance



Cox, Meier, Oertelt and DiCarlo. Nature Neuroscience (2005)

Retinal (position) space

Experimental rationale to test temporal contiguity* theories of invariance



short
time

Retinal (position) space

short
time

Image 1 Image 2

same 
object

same 
object

What if we altered the visual world?
Perceptual prediction:
subjects will tend to confuse these 
objects across these positions

Neuronal prediction:
IT neurons will tend to confuse these 
objects across these positions

Experimental rationale to test temporal contiguity* theories of invariance



Cox, Meier, Oertelt and DiCarlo. Nature Neuroscience (2005)

Normal 
exposure

object A
object A

object A

saccading
time

object A
object B

object B

Swapped 
exposure

saccading

Experiment 1 (human subject, within subject design)

What if we altered the visual world?
Perceptual prediction:
subjects will tend to confuse these 
objects across these positions



Test phase
“same” / “different” task

Normal 
exposure

object A
object A

object A

saccading
time

object A
object B

object B

Swapped 
exposure

saccading

Position tolerance of object perception is 
altered by unsupervised visual experience.

Related work (e.g. Bulthoff, Aslin, Chun, Sinha,...)

Experiment 1 (human subject, within subject design)

Confirmed
What if we altered the visual world?

Perceptual prediction:
subjects will tend to confuse these 
objects across these positions

Cox, Meier, Oertelt and DiCarlo. Nature Neuroscience (2005)

Exposure phase
200-400 swaps



Retinal (position) space

Background: Role of IT neurons in position invariant object representation

IT receptive field

Fact: adult IT neurons are position 
tolerant among common objects

 (e.g. Desimone, Rolls, Tanaka, Logothetis, Vogels, Connor, ...)Is temporal contiguity of unsupervised 
experience and implicit “teacher” of  IT 
position tolerance ???

IT
 R

es
po

ns
e

Retinal Position



IT receptive field

Retinal (position) space

Fact: adult IT neurons are position 
tolerant among common objects

 (e.g. Desimone, Rolls, Tanaka, Logothetis, Vogels, Connor, ...)Is temporal contiguity of unsupervised 
experience and implicit “teacher” of  IT 
position tolerance ???

IT
 R
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ns
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Retinal Position

Background: Role of IT neurons in position invariant object representation



IT receptive field

Retinal (position) space

IT
 R

es
po

ns
e

Retinal Position

short
time

same 
object

same 
object

Natural experience

Is temporal contiguity of unsupervised 
experience and implicit “teacher” of  IT 
position tolerance ???

Altered experience

Neuronal (IT) prediction of a temporal contiguity theory of invariance



Experimental design (within-neuron, longitudinal design)

Figure 2.  A. In our best model of the human visual system, the rhesus monkey, the visual areas have 
been mapped, are hierarchically organized 26, and the ventral visual stream is known to be critical for 
complex object discrimination (colored areas in brain inset, adapted from [3]).  We conceptualize each 
stage of the ventral stream as a new population representation.  The lower panels schematically illustrate 
these populations at successively higher stages across the ventral visual stream.  Any pattern of photons 
from the world (here a face) is transduced into neuronal activity at the retina and is progressively and 
rapidly transformed and re-represented in each population, perhaps by a common canonical cortical 
transform (T, see text).    Solid arrows indicate the direction of visual information flow based on neuronal 
latency (~100 ms latency in IT), but this does not preclude fast feedback both within and between areas 
(dashed arrows).   B-D: In each neuronal population space, each cardinal axis is one neuron’s activity 
(e.g. firing rate over a ~200 ms interval), the dimensionality is the number of neurons, and a given visual 
image is one point.  Although such high-dimensional spaces cannot be visualized, the 3D views portrayed 
here provide intuition.   Due to changes in identity-preserving variables such as position, scale and pose, 
each object can produce an infinite number of different point in each space.   Those points arise from its 
low dimensional “object identity manifold” embedded in the space.  Here two objects are shown (two 
faces) along with their simulated object identity manifolds (here two dimensional sheets resulting from 
the manipulation of two degrees of freedom in pose). The left panel shows pixel (retina-like) manifolds 
generated from 3D face models (14,400-dimensional data).  The display axes were chosen to be the 
projections that best separate identity, pose azimuth and pose elevation.  Even though this simple example 
only exercises a fraction of typical real-world variation, the object manifolds are hopelessly tangled and 
not separable with simple decision functions (e.g.  hyperplane in green).  As visual information progresses 
through the ventral visual pathway, it is progressively re-represented (untangled) in each visual area and 
becomes better and better at directly supporting object recognition.  A population of five hundred V1 
neurons was simulated as a bank of Gabor filters with firing thresholds (still tangled).  In contrast, a 
population of five hundred simulated IT neurons gives rise to object manifolds that are easily separated.  
In addition, such a representation also allows one to recover information about identity-preserving 
variables, such as object position, size and pose (see text). Figure adapted from [4], please see for details.

Screen

NP

Nuo Li



Retinal (position) spaceRetinal (position) space

Figure 2.  A. In our best model of the human visual system, the rhesus monkey, the visual areas have 
been mapped, are hierarchically organized 26, and the ventral visual stream is known to be critical for 
complex object discrimination (colored areas in brain inset, adapted from [3]).  We conceptualize each 
stage of the ventral stream as a new population representation.  The lower panels schematically illustrate 
these populations at successively higher stages across the ventral visual stream.  Any pattern of photons 
from the world (here a face) is transduced into neuronal activity at the retina and is progressively and 
rapidly transformed and re-represented in each population, perhaps by a common canonical cortical 
transform (T, see text).    Solid arrows indicate the direction of visual information flow based on neuronal 
latency (~100 ms latency in IT), but this does not preclude fast feedback both within and between areas 
(dashed arrows).   B-D: In each neuronal population space, each cardinal axis is one neuron’s activity 
(e.g. firing rate over a ~200 ms interval), the dimensionality is the number of neurons, and a given visual 
image is one point.  Although such high-dimensional spaces cannot be visualized, the 3D views portrayed 
here provide intuition.   Due to changes in identity-preserving variables such as position, scale and pose, 
each object can produce an infinite number of different point in each space.   Those points arise from its 
low dimensional “object identity manifold” embedded in the space.  Here two objects are shown (two 
faces) along with their simulated object identity manifolds (here two dimensional sheets resulting from 
the manipulation of two degrees of freedom in pose). The left panel shows pixel (retina-like) manifolds 
generated from 3D face models (14,400-dimensional data).  The display axes were chosen to be the 
projections that best separate identity, pose azimuth and pose elevation.  Even though this simple example 
only exercises a fraction of typical real-world variation, the object manifolds are hopelessly tangled and 
not separable with simple decision functions (e.g.  hyperplane in green).  As visual information progresses 
through the ventral visual pathway, it is progressively re-represented (untangled) in each visual area and 
becomes better and better at directly supporting object recognition.  A population of five hundred V1 
neurons was simulated as a bank of Gabor filters with firing thresholds (still tangled).  In contrast, a 
population of five hundred simulated IT neurons gives rise to object manifolds that are easily separated.  
In addition, such a representation also allows one to recover information about identity-preserving 
variables, such as object position, size and pose (see text). Figure adapted from [4], please see for details.
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Experimental design (within-neuron, longitudinal design)



Figure 2.  A. In our best model of the human visual system, the rhesus monkey, the visual areas have 
been mapped, are hierarchically organized 26, and the ventral visual stream is known to be critical for 
complex object discrimination (colored areas in brain inset, adapted from [3]).  We conceptualize each 
stage of the ventral stream as a new population representation.  The lower panels schematically illustrate 
these populations at successively higher stages across the ventral visual stream.  Any pattern of photons 
from the world (here a face) is transduced into neuronal activity at the retina and is progressively and 
rapidly transformed and re-represented in each population, perhaps by a common canonical cortical 
transform (T, see text).    Solid arrows indicate the direction of visual information flow based on neuronal 
latency (~100 ms latency in IT), but this does not preclude fast feedback both within and between areas 
(dashed arrows).   B-D: In each neuronal population space, each cardinal axis is one neuron’s activity 
(e.g. firing rate over a ~200 ms interval), the dimensionality is the number of neurons, and a given visual 
image is one point.  Although such high-dimensional spaces cannot be visualized, the 3D views portrayed 
here provide intuition.   Due to changes in identity-preserving variables such as position, scale and pose, 
each object can produce an infinite number of different point in each space.   Those points arise from its 
low dimensional “object identity manifold” embedded in the space.  Here two objects are shown (two 
faces) along with their simulated object identity manifolds (here two dimensional sheets resulting from 
the manipulation of two degrees of freedom in pose). The left panel shows pixel (retina-like) manifolds 
generated from 3D face models (14,400-dimensional data).  The display axes were chosen to be the 
projections that best separate identity, pose azimuth and pose elevation.  Even though this simple example 
only exercises a fraction of typical real-world variation, the object manifolds are hopelessly tangled and 
not separable with simple decision functions (e.g.  hyperplane in green).  As visual information progresses 
through the ventral visual pathway, it is progressively re-represented (untangled) in each visual area and 
becomes better and better at directly supporting object recognition.  A population of five hundred V1 
neurons was simulated as a bank of Gabor filters with firing thresholds (still tangled).  In contrast, a 
population of five hundred simulated IT neurons gives rise to object manifolds that are easily separated.  
In addition, such a representation also allows one to recover information about identity-preserving 
variables, such as object position, size and pose (see text). Figure adapted from [4], please see for details.
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Exposure phase
100 swaps, ~15 min
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Experimental design (within-neuron, longitudinal design)

Exposure phase
100 swaps, ~15 min

Test 
phaseScreen
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Experimental design (within-neuron, longitudinal design)

Exposure phase
100 swaps, ~15 min
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Experimental design (within-neuron, longitudinal design)

Exposure phase
100 swaps, ~15 min

Test 
phaseScreen

NP

120

80

40

0
-3 30

S
pi

ke
s 

/ s

Position (deg)

N

P

Unsupervised !
Real-time eye tracking and stimulus control



Experimental design (within-neuron, longitudinal design)

Exposure phase
100 swaps, ~15 min
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Single IT neuron
Swap
position

**p=0.007 (n=101, “Position x Exposure” interaction)
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So we asked, do we see this 
effect in real IT neurons

shown here is the data from 
an single IT neuron, and its 
response to P and N at the 
swap position,

we then monitored its 
response as a function of 
exposure time, 
“click”
every data pt is the averaged 
response from a particular 
test phase..

... and what we saw was that 
as the animal was exposed to 

Results:  IT single unit activity

Li and DiCarlo, Science (2008)
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Effects of experience in visual worlds with specific alterations in 
temporal contiguity of object images

• Monkey IT neurons: 

Time in altered world

highly specific change in 
position tolerant object selectivity
Li and DiCarlo, Science (2008)
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• Very strong:  
- effect size is as large or larger 
than long-term IT plasticity studies 

(e.g. Baker et al 2003; Sigala & Logothetis 2000; 
Kobetake et al 1998; Cox and DiCarlo, 2008) 

- significant at individual IT sites

Can study  
learning 
“online”



• Cannot be explained as attention or adaptation

• Likely reflects changes in feed-forward processing

• Is object/feature specific

• IT changes last at least weeks (indirect, preliminary)

• May share underlying mechanism with “paired 
associates” learning (Miyashita 1988, 1991; Erikson et al 1999; Messinger et al. 2001)

• ... but is unsupervised and on time scale of natural vision

More important facts about this result ...

Inference:  temporal contiguity of visual experience 
“instructs” explicit (“invariant”) object representation

“Unsupervised temporal tolerance learning” (UTL)



More important facts about these results ...

Inference:  temporal contiguity of visual experience 
“instructs” explicit (“invariant”) object representation

• Future experiments: characterization of UTL
• role of saccades?  size, pose tolerance ?   animal perception?   stability?   development? 
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of IT neurons

“Unsupervised temporal tolerance learning” (UTL)



Tangled object 
information

How does this untangling 
happen ???

Summary

temporal contiguity 

learned
unsupervised

Explicit, untangled 
object representation

- Focus.
- First spikes.
- No binding

?
Adult learning -->  same mechanisms as infant?



Direct population comparison of the V4 and IT representation

5 deg
5 deg

Recorded 140 V4 neurons, 140 IT neurons

V4

IT

Same animal, task, stimuli.

5 deg
5 deg

Recorded 140 V4 neurons, 140 IT neurons

V4

IT

140 V4 neurons 140 IT neurons

Nicole Rust

Explicit object 
representation

?

How does this untangling 
happen ???

Explicit, untangled 
object representation



How well can each population (V4 vs. IT) retain object selectivity?

Rust & DiCarlo (in prep)
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Tangled object 
information

Summary

temporal contiguity 

learned
unsupervised

?

How does this untangling 
happen ???

Explicit object 
representation

gradual, step-wise transformation
equally distributed code at each stage



Tangled object 
information

Summary

Explicit object 
representation

temporal contiguity 

learned
unsupervised

?
temporal conti guity

Canonical cortical 
learning algorithm ?

Canonical 
cortical
untangling 
transform ?

Natural visual statistics
+

How does this untangling 
happen ???

gradual, step-wise transformation
equally distributed code at each stage



Our current directions...

“Unsupervised temporal tolerance learning” (UTL)

• Experiments: characterization of UTL
• size, pose tolerance ?  saccade?  attention?  animal perception?  stability?  development? 



“Unsupervised temporal tolerance learning” (UTL)

• Experiments: characterization of UTL
• size, pose tolerance ?  saccade?  attention?  animal perception?  stability?  development? 

• Search for cortical untangling transforms
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Pinto, DiCarlo and Cox, ECCV (2008); Pinto, DiCarlo & Cox (submitted)
Pinto, Cox & DiCarlo, PLoS Comp Bol (2008), COSYNE (2008)

Dave Cox Nicolas Pinto
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2. Unsupervised training 
    of each variant

1. Generate thousands
    of model variants
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High-throughput search for a cortical untangling transform

Pinto, DiCarlo and Cox, ECCV (2008); Pinto, DiCarlo & Cox (submitted)
Pinto, Cox & DiCarlo, PLoS Comp Bol (2008), COSYNE (2008)



Our current directions...

Adapted from Kelly et al. J. Neurosci (2007)

“Unsupervised temporal tolerance learning” (UTL)

• Experiments: characterization of UTL
• size, pose tolerance ?  saccade?  attention?  animal perception?  stability?  development? 

• Search for cortical untangling transforms

Focus on understanding the building of invariance over smaller cortical steps



Our current directions...

DiCarlo Lab (unpublished)

Adapted from Kelly et al. J. Neurosci (2007)



Our current directions...
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Adapted from Kelly et al. J. Neurosci (2007)



DiCarlo Lab (unpublished)

Our current directions...

Adapted from Kelly et al. J. Neurosci (2007)



Our current directions...

“Unsupervised temporal tolerance learning” (UTL)

• Experiments: characterization of UTL
• size, pose tolerance ?  saccade?  attention?  animal perception?  stability?  development? 

• Test real-world performance of these ideas

Focus on understanding the building of invariance over smaller cortical steps

Spatial organization of object representation ?



1. Focus on the crux problem

2. Data transformations

3. New empirical results

4. View of the solution
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