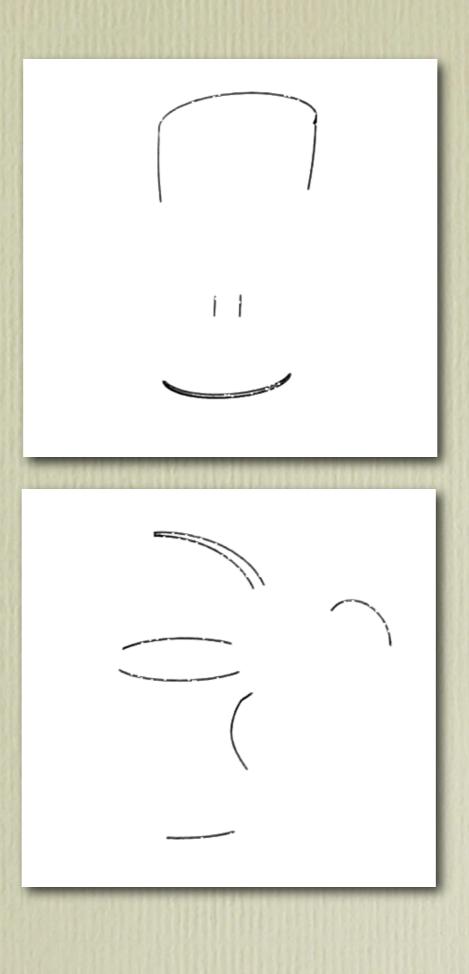
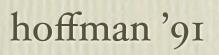
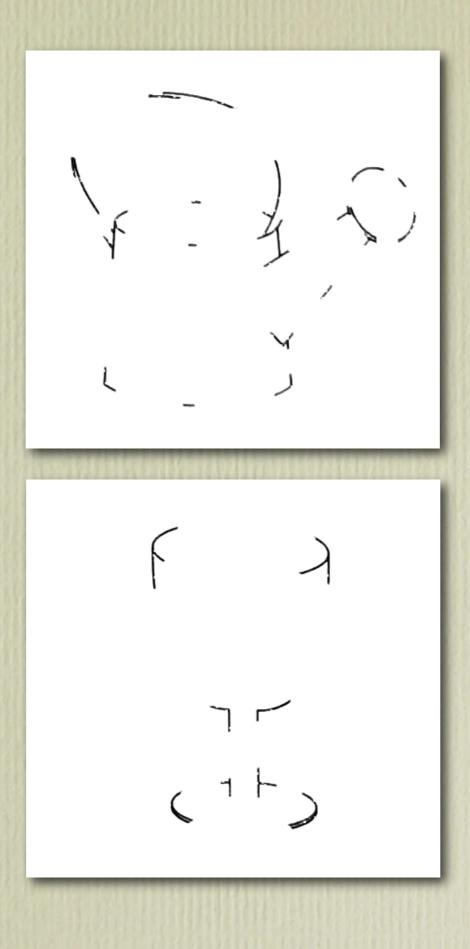
Benchmarks for Vision

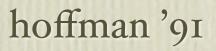
Exact probabilities of arbitrary features in a generative model of naturalistic images

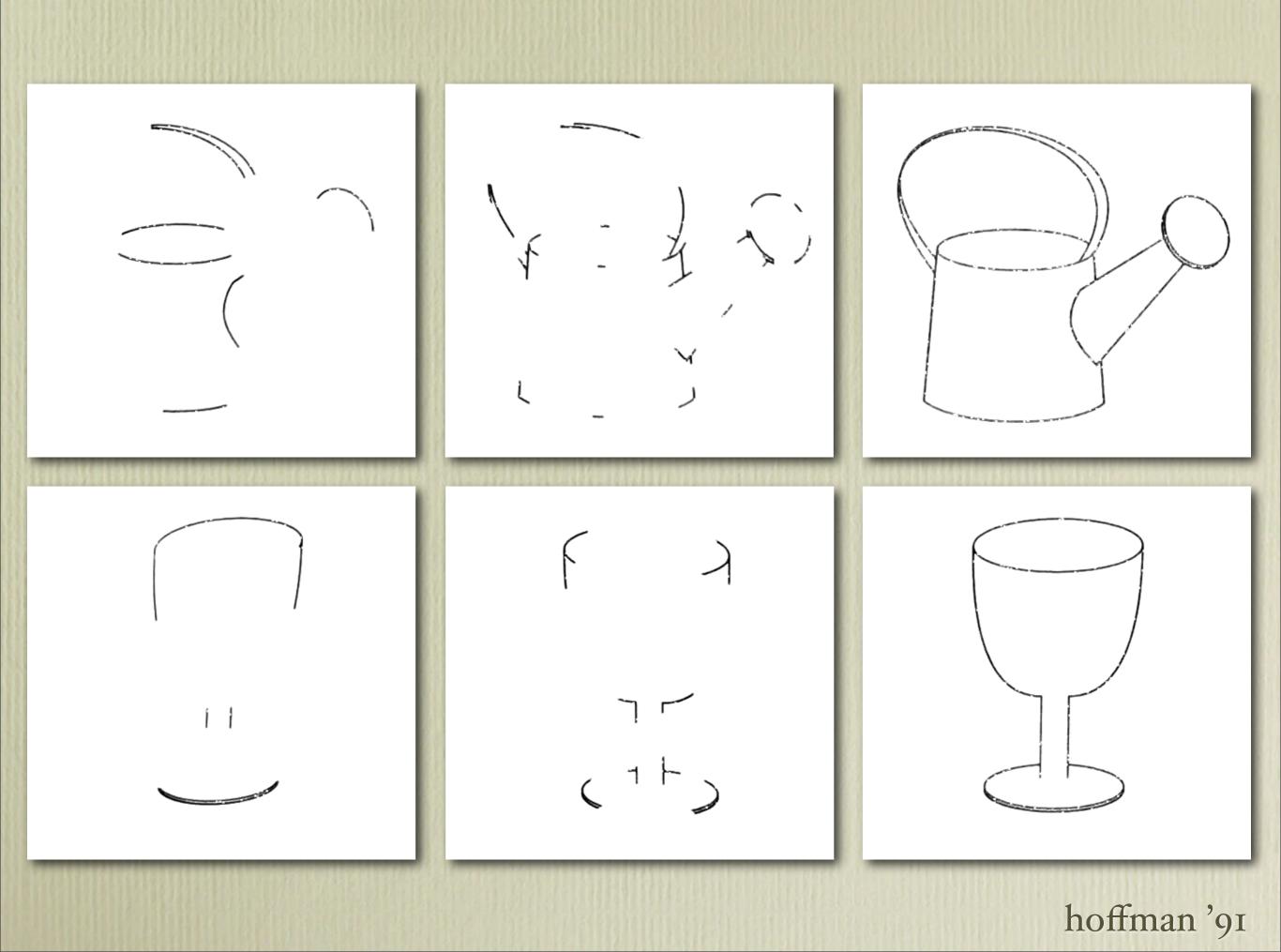
xaq pitkow @ columbia university











• WANTED: explicit probabilities for interesting features!

• impossible for real natural scenes

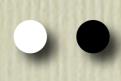
• most simple models are too unrealistic

• need richer yet tractable model

• Minimal description of local features:

Surface 1 point

Edge 2 points T-junction 4 points



Brightness perception (3 pts)

Brightness perception (3 pts)

Contour facilitation (4 pts)

Brightness perception (3 pts)

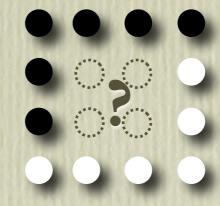
Contour facilitation (4 pts)

Amodal completion (8 pts)

• Natural scene statistics:

• Natural scene statistics:

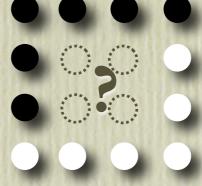
• Fill in missing information:



• Natural scene statistics:

• Fill in missing information:

which object is in front?

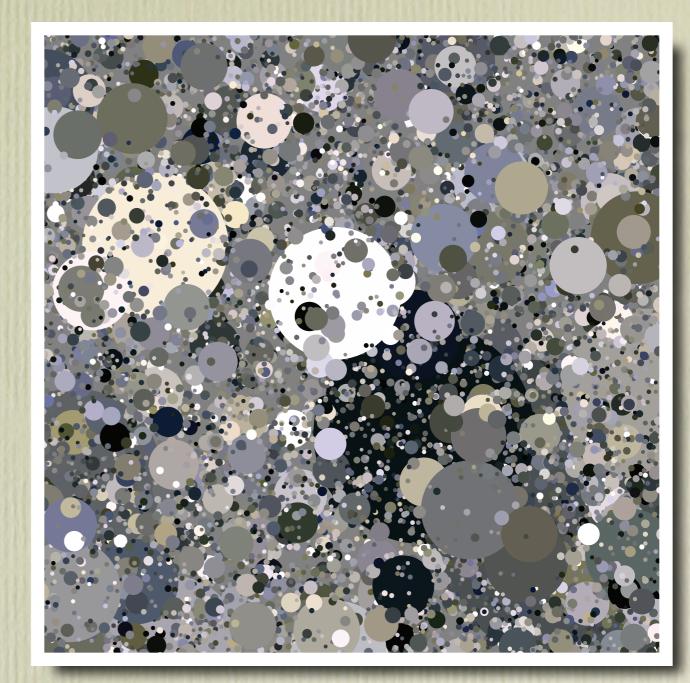


Dead Leaves Model

Drop 'Leaves' with random shape, size, color, location.

Naturalistic because:

- objects
- occlusion
- edges

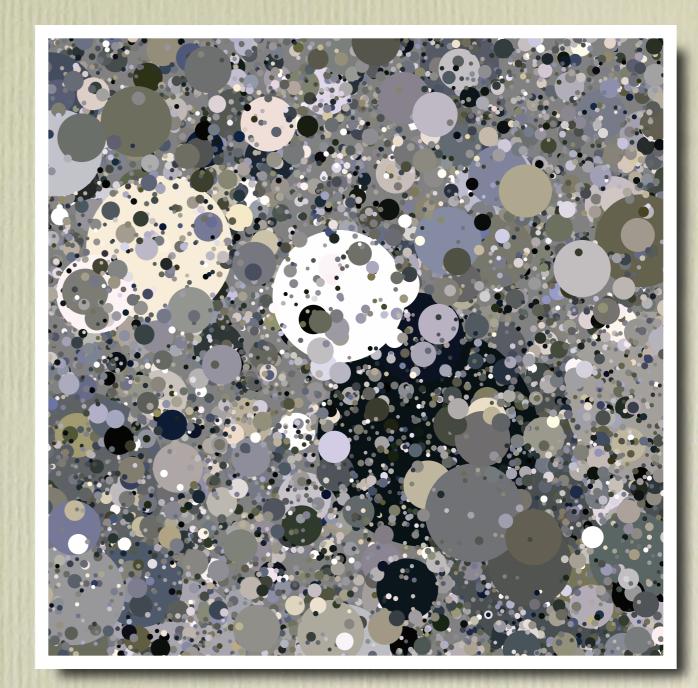


Matheson 1975, Ruderman 1997, Mumford 2001

Goal: Multipoint Probabilities

• Find joint probability of image intensity at arbitrary set of points

P(X, Y, Z)

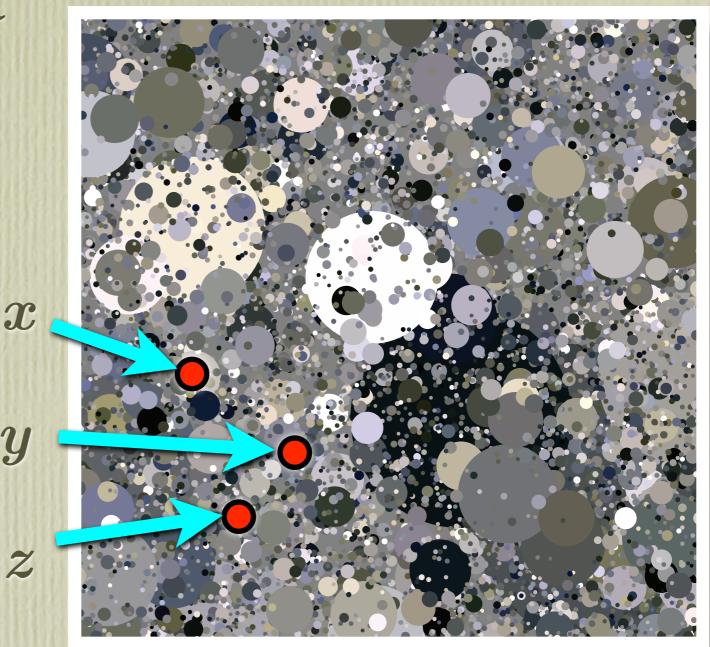


lowercase: position uppercase: intensity

Goal: Multipoint Probabilities

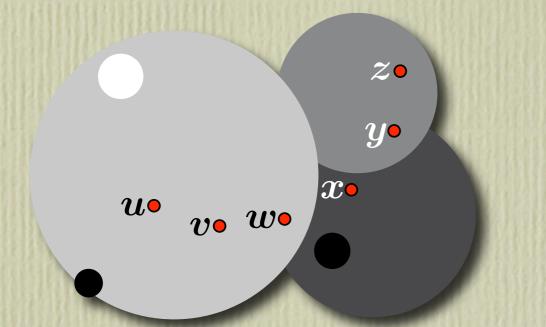
• Find joint probability of image intensity at arbitrary set of points

P(X, Y, Z)



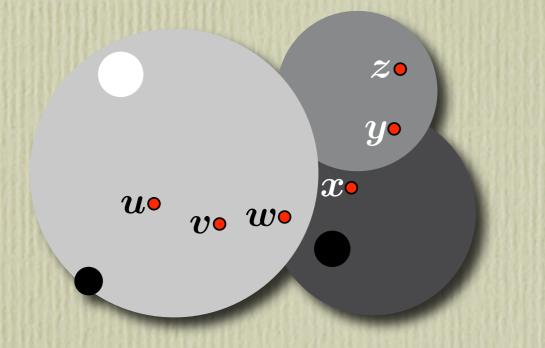
lowercase: position uppercase: intensity

• The arrangement of the objects determines a "**partition**" of the points.



$$\pi = \{\{u, v, w\}, \{x\}, \{y, z\}\}$$

• The arrangement of the objects determines a "**partition**" of the points.

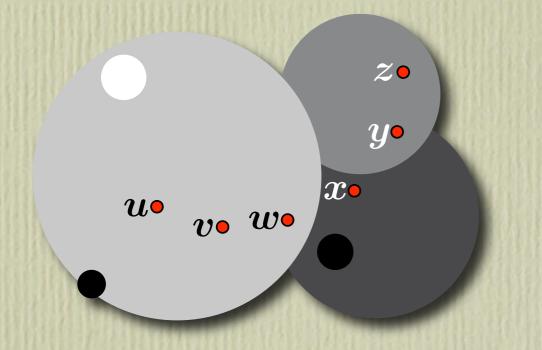


$$\pi = \{\{u, v, w\}, \{x\}, \{y, z\}\}$$

• Points in different objects have **independent** intensities

 $P(U, V, W, X, Y, Z|\pi) = P(U, V, W) \cdot P(X) \cdot P(Y, Z)$

• The arrangement of the objects determines a "**partition**" of the points.



$$\pi = \{\{u, v, w\}, \{x\}, \{y, z\}\}$$

• Points in different objects have **independent** intensities

 $P(U, V, W, X, Y, Z|\pi) = P(U, V, W) \cdot P(X) \cdot P(Y, Z)$

• Full joint probability is average over all partitions. $P(I) = \sum P_{\pi} P(I|\pi)$

$$P_{\{x,y\}}$$

P = prob for any obj Q = prob for this obj

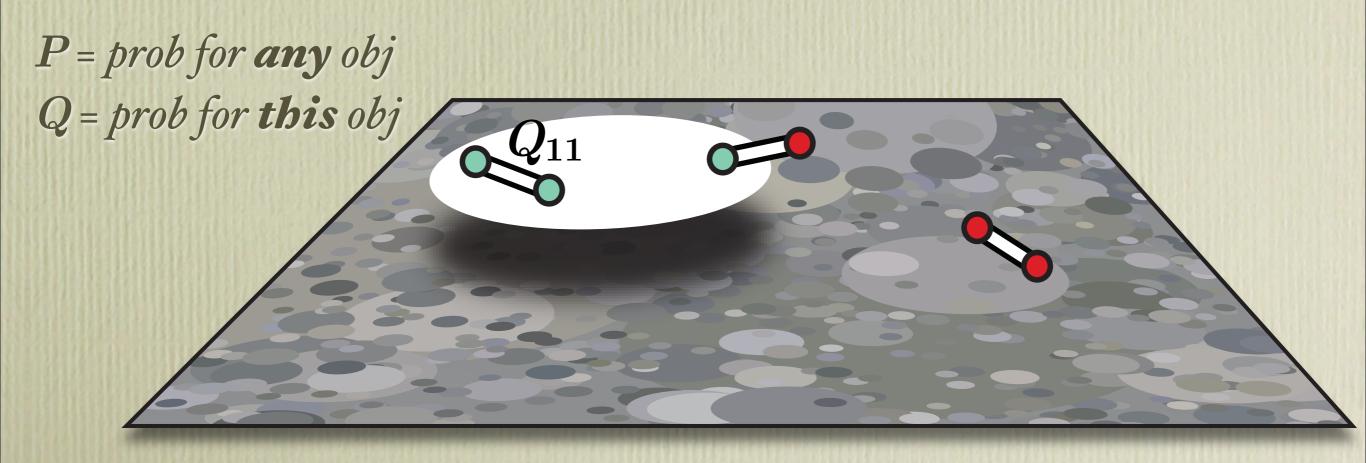
$$P_{\{x,y\}}$$

P = prob for any obj Q = prob for this obj

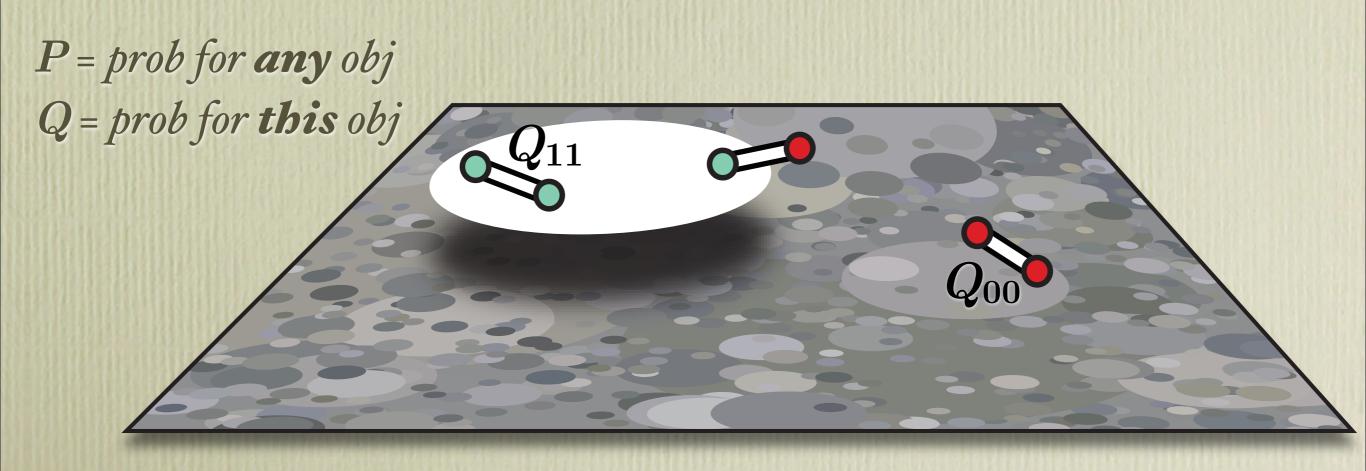
$$P_{\{x,y\}}$$

P = prob for any obj Q = prob for this obj

$$P_{\{x,y\}} = Q_{11}$$



$P_{\{x,y\}} = Q_{11} + Q_{00}P_{\{x,y\}}$



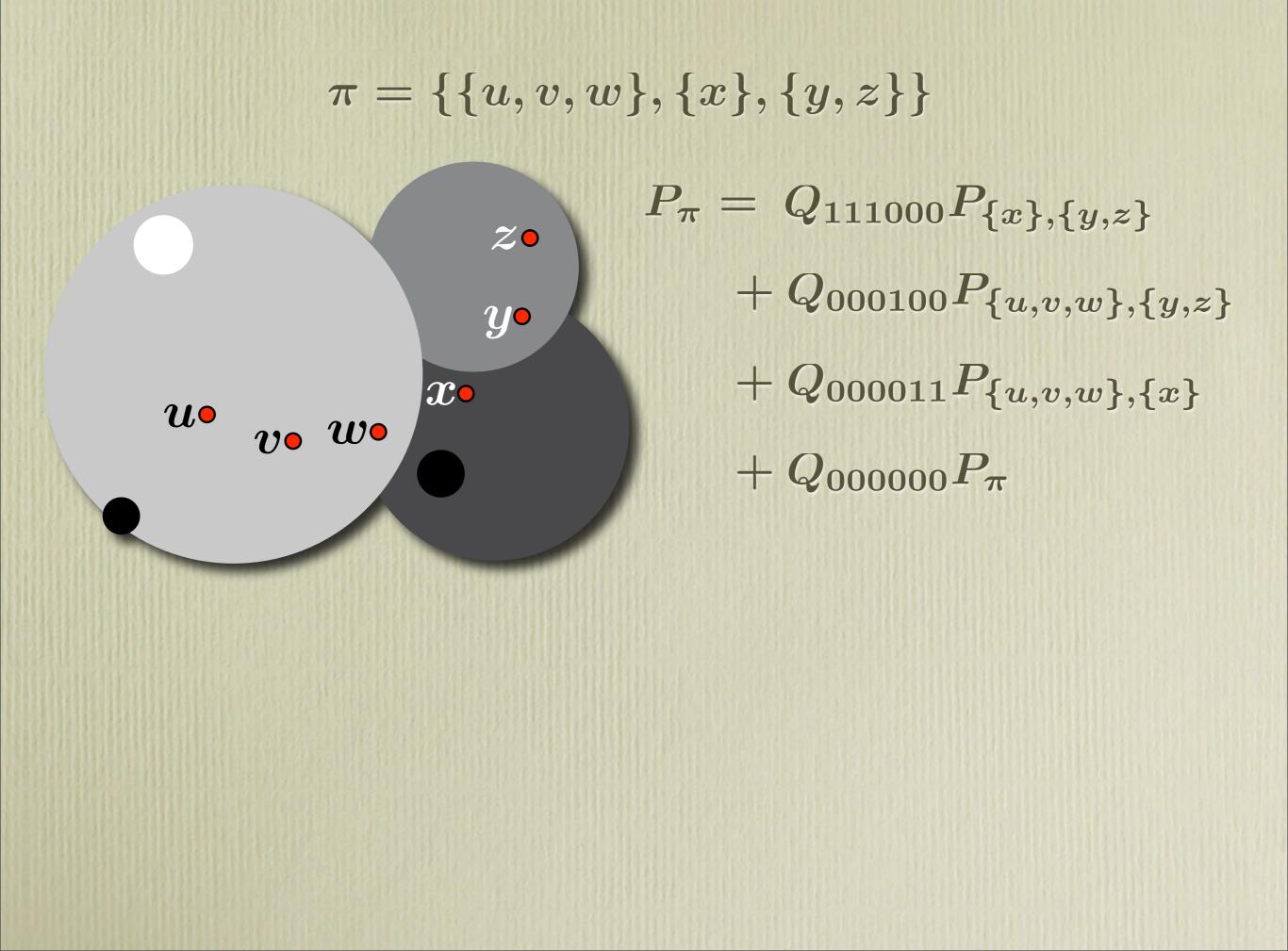
$$egin{aligned} P_{\{x,y\}} &\equiv Q_{11} + Q_{00} P_{\{x,y\}} \ &= rac{Q_{11}}{1 - Q_{00}} \end{aligned}$$

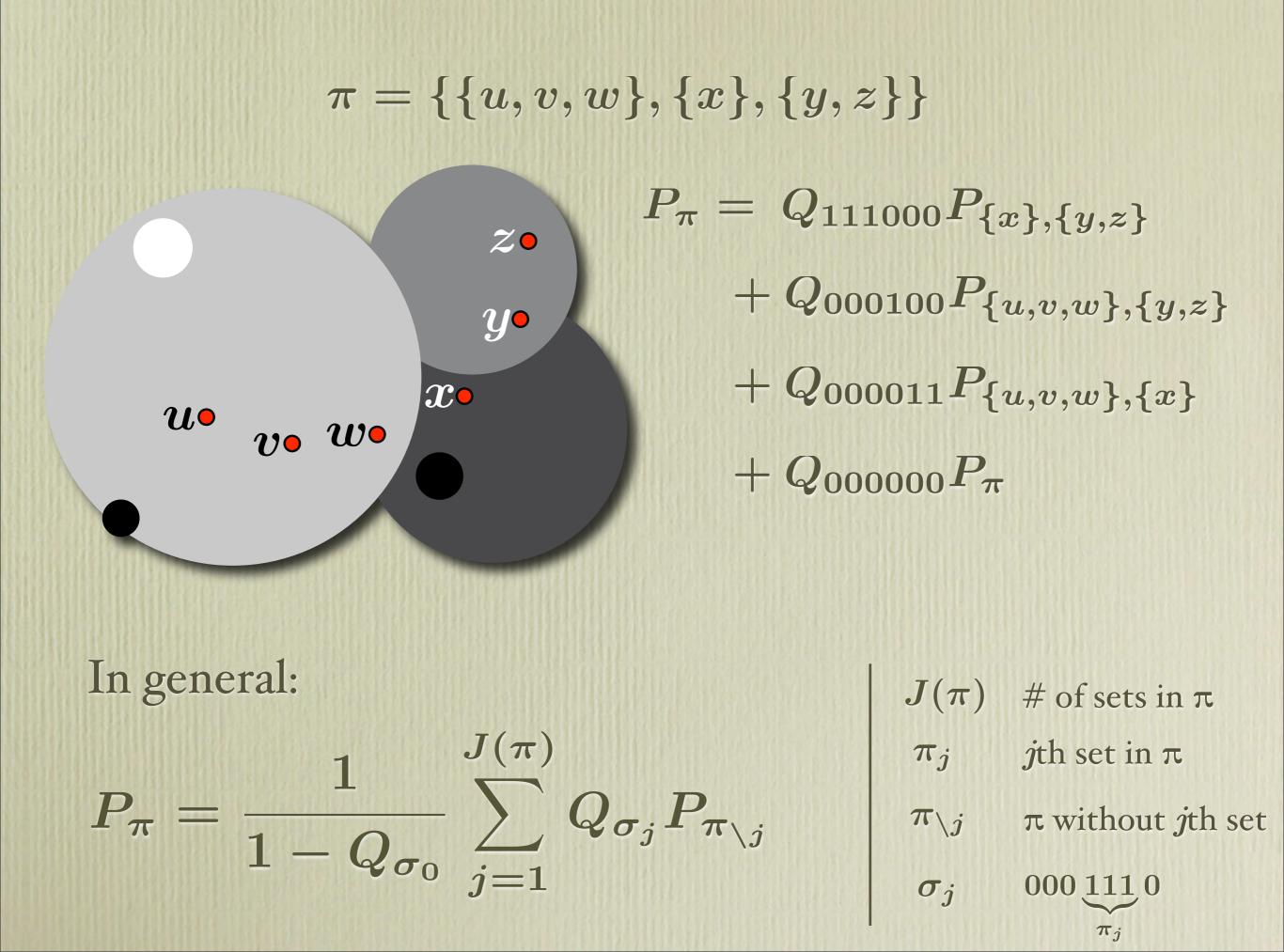
P = prob for any obj Q = prob for this obj Q₁₁ Q₀₀

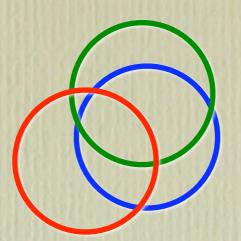
$$P_{\{x,y\}} = Q_{11} + Q_{00}P_{\{x,y\}}$$

= $rac{Q_{11}}{1 - Q_{00}}$

P = prob for any obj Q = prob for this obj Q₁₀ Q₀₀ Q₀₀





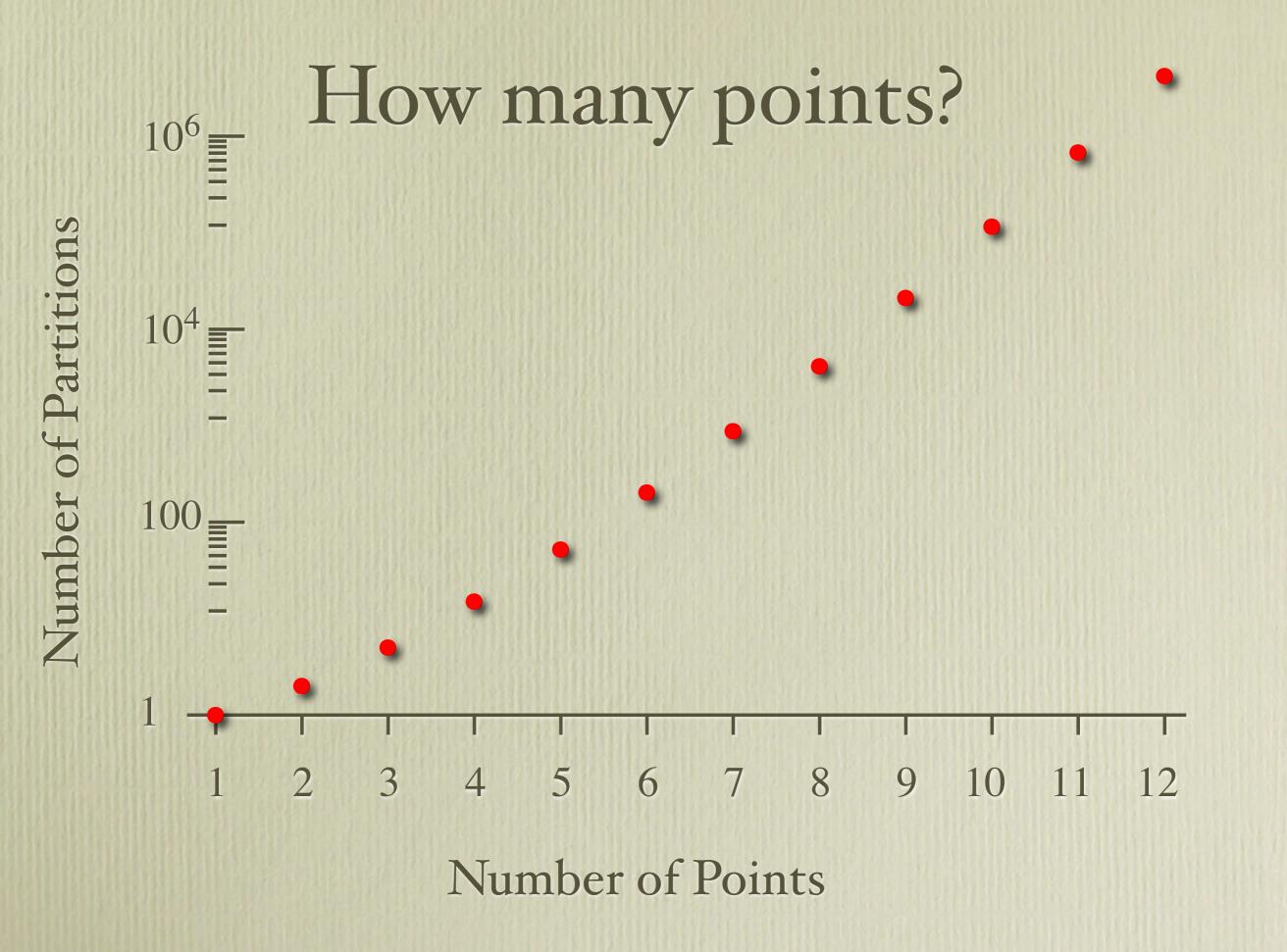


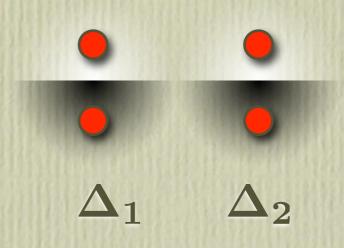
Recursion gives P_{π}

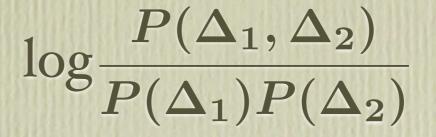
Weighted sum gives P(I)

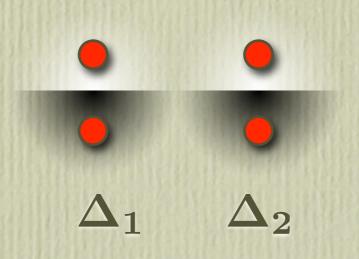
 $P(I) = \sum P_{\pi} P(I|\pi)$ π

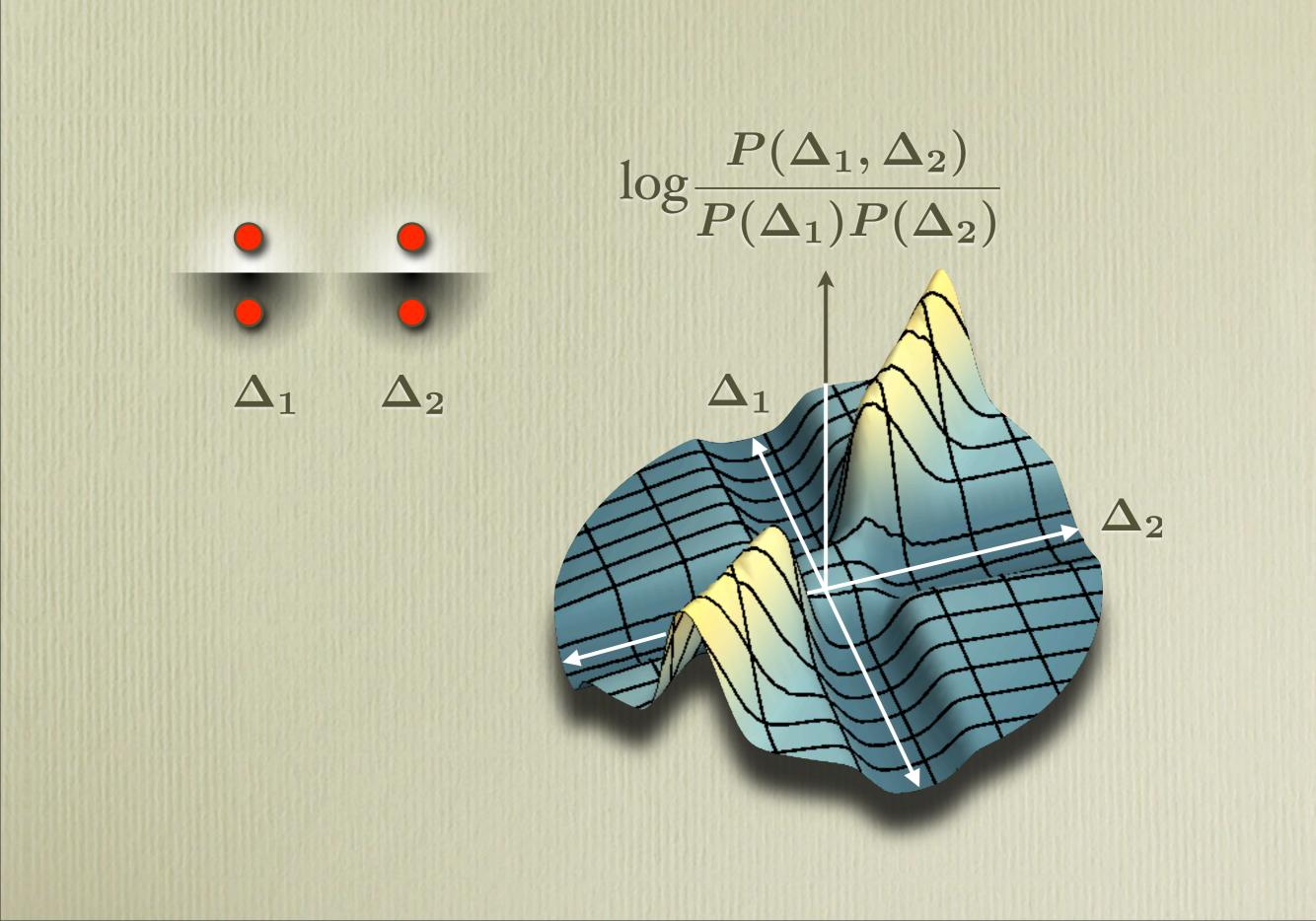
Joint feature probabilities!









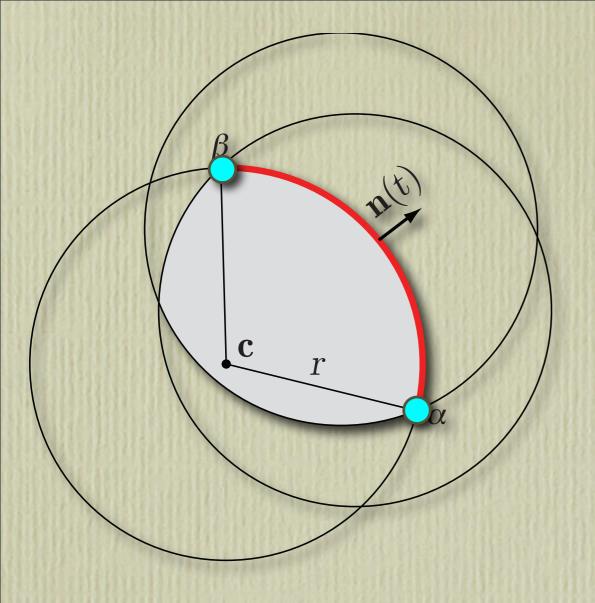


Thanks to...

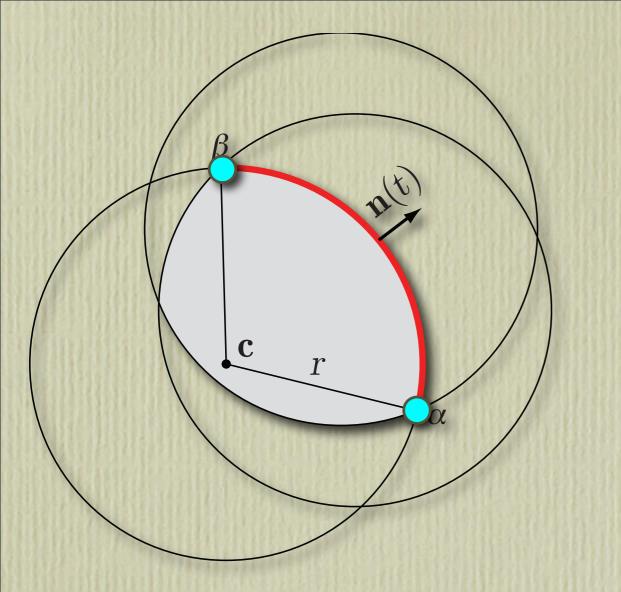
- Ken Miller
- Larry Abbott
- Taro Toyoizumi
- Vladimir Itskov

the columbia neurotheory center

• the Swartz foundation

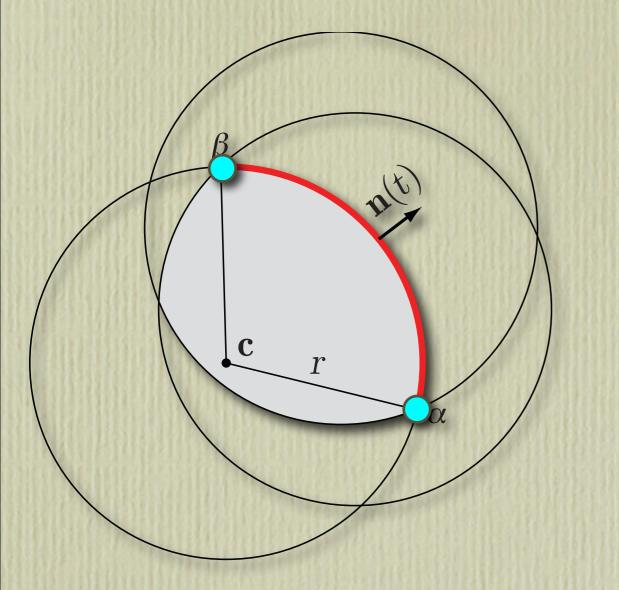


• Calculate areas using the Divergence Theorem



• Calculate areas using the Divergence Theorem

• Average over shape ensemble $Q_{\sigma} = \int dr \, P(r) \, Q_{\sigma}(r)$



• Calculate areas using the Divergence Theorem

• Average over shape ensemble $Q_{\sigma} = \int dr \, P(r) \, Q_{\sigma}(r)$

 Graph changes with radius