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Statistical structure of neural activities

Evoked activity —> samples from P(y | x) . A
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Statistical structure of neural activities

Evoked activity —> samples from P(y | x) . A
- P(y) Z/P(y!w) P(z) dv
Spontaneous activity —> samples from P(y) —~— ——
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How to evaluate distributions of activities?
Available methods
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How to evaluate distributions of activities?
Available methods

mean activities
no account of variability
no joint covariability

e measuring receptive fields

variability incorporated

recent models account for joint
covariability

considers unrecorded neurons as well

conditional distribution only: neural
activity is only interpreted with respect
to a stimulus

e LNP models
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How to evaluate distributions of activities?
Available methods

mean activities
no account of variability
no joint covariability

e measuring receptive fields

variability incorporated

recent models account for joint
covariability

considers unrecorded neurons as well

conditional distribution only: neural
activity is only interpreted with respect
to a stimulus

e LNP models

Od d@d O00d

e histogram technique undersampling

handles the whole distribution of
activities

level of correlations needs to be
determined a priori

number of parameters grows
exponentially
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How to compare distributions of activities?
Kullback-Leibler divergence

KL(Q(y), P (y)] = - / dy Q(y) log Py) — H (Q(y))

Gergo Orban 4 Sloan - Swartz Meeting , July 20, 2008



How to compare distributions of activities?
Kullback-Leibler divergence

KL[Q(y), P (y)] = - / dy Q(y) log Py) - H (Q(»)

cross entropy entropy

Gergo Orban 4 Sloan - Swartz Meeting , July 20, 2008



How to compare distributions of activities?
Kullback-Leibler divergence

KL[Q(y), P (y)] = - / dy Q(y) log Py) - H (Q(»)

cross entropy entropy

e quantifies differences between two PDFs
eis always >=0

(0 when the two distributions are the same
e NOt symmetric

egenerally, the integral is intractable
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How to compare distributions of activities?
Kullback-Leibler divergence

KL[Q(y), P (y)] = - / dy Q(y) log Py) - H (Q(»)

cross entropy entropy

e quantifies differences between two PDFs
eis always >=0

(0 when the two distributions are the same
e NOt symmetric

egenerally, the integral is intractable

e LNP models: P(y) is not available, only P(y | x),
therefore the stimulus ensemble has to be marginalized

emax entropy models: partition function for P(y)
needs to be determined
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Latent variable density estimator

e probabilistic model
e latent variables can account for higher-order correlations

e functional interpretation of the density estimator
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Latent variable density estimator

e probabilistic model
e latent variables can account for higher-order correlations

e functional interpretation of the density estimator
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with a good choice of density estimators
(directed models) it is easy to evaluate P(y)
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Latent variable density estimator

e probabilistic model
e latent variables can account for higher-order correlations

e functional interpretation of the density estimator

KL[Q(y), P (y)] = - / dy Q(y) log P(y)|- H (Q(y)

with a good choice of density estimators
(directed models) it is easy to evaluate P(y)

samples can be used to evaluate a Monte Carlo integral:
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Latent variable density estimator

e probabilistic model
e latent variables can account for higher-order correlations

e functional interpretation of the density estimator

KL[Q(y), P (y)] = - / dy Q(y) log P(y) |7 (@)

with a good choice of density estimators
(directed models) it is easy to evaluate P(y)

samples can be used to evaluate a Monte Carlo integral:

Nsamples
1
[ v Q)05 P(y) = 08 P(y). 4 € Q

Nsamples :
1=1
e KL divergences are calculated with respect to a reference condition
KL[Pret(y), P1(y)] — KL[Pet(y), P2(y)] =
CE[Pret(y), Pr(y)] — CE[Pret(y), P2(y)]
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Calculation of Kullback-Leibler divergence
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Calculation of Kullback-Leibler divergence

KLIQ (), P (y)| = —/dy Q(y)log P(y) — H (Q(y)) =
Q(y) CE[Q(y),P(y)] — H(Q(y))
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Demonstration on synthetic data
Evaluating SA and EA distributions
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Demonstration on synthetic data
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e Prediction: Activity evoked by natural images is required to be more
similar to spontaneous activity than that evoked by noise

e CE between natural image EA and SA
noise pattern EA and SA
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Prediction: Activity evoked by natural images is required to be more
similar to spontaneous activity than that evoked by noise
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Demonstration on synthetic data
Evaluating SA and EA distributions
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e CE between natural image EA and SA
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e Prediction: Activity evoked by natural images is required to be more
similar to spontaneous activity than that evoked by noise

e CE between natural image EA and SA
noise pattern EA and SA
Partially observed
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Recorded data
EA and SA in the V1 of ferrets

e recordings from adult behaving ferrets

e calculating CE between:
* natural movie and dark
* random noise and dark
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Recorded data
EA and SA in the V1 of ferrets

recordings from adult behaving ferrets

e calculating CE between:
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Conclusions

e KL with latent variable density estimators provide a
general framework for quantifying the similarity
between neural activities

e the method works even on limited number of
neurons

e analysis of data from behaving animal is consistent
with model predictions

e further analysis is needed to assess whether dark
condition or sleep is a better model for
spontaneous activity
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Validation on a model trained with natural
images
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Marginalized EA
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