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Statistical structure of neural activities

P (y | x)Evoked activity

•we need to assess the differences 
between high-dimensional 
multivariate distributions

samples from

P (y)Spontaneous activity samples from
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How to evaluate distributions of activities?
Available methods

• LNP models variability incorporated
recent models account for joint 
covariability
considers unrecorded neurons as well
conditional distribution only: neural 
activity is only interpreted with respect 
to a stimulus

• maximum entropy models handles the whole distribution of 
activities
level of correlations needs to be 
determined a priori
number of parameters grows 
exponentially

mean activities
no account of variability
no joint covariability

• measuring receptive fields

3

• histogram technique undersampling
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How to compare distributions of activities?
Kullback-Leibler divergence

•quantifies differences between two PDFs

•is always >=0

•0 when the two distributions are the same

•not symmetric

•generally, the integral is intractable

•LNP models: P(y) is not available, only P(y | x),
therefore the stimulus ensemble has to be marginalized

•max entropy models: partition function for P(y) 
needs to be determined
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∫
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• functional interpretation of the density estimator

• with a good choice of density estimators 
(directed models)  it is easy to evaluate P(y)

KL [Q (y) , P (y)] = −
∫

dy Q(y) log P (y)−H (Q(y))

5

• KL divergences are calculated with respect to a reference condition

KL[Pref(y), P1(y)]−KL[Pref(y), P2(y)] =
CE[Pref(y), P1(y)]− CE[Pref(y), P2(y)]

• samples can be used to evaluate a Monte Carlo integral:
∫

dy Q(y) log P (y) ≈ 1
Nsamples

Nsamples∑

i=1

log P (yi) , yi ∈ Q
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Recorded data
EA and SA in the V1 of ferrets

• recordings from adult behaving ferrets

• calculating CE between:
✤ natural movie and dark

✤ random noise and dark
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Conclusions

• KL with latent variable density estimators provide a 
general framework for quantifying the similarity 
between neural activities

• the method works even on limited number of 
neurons

• analysis of data from behaving animal is consistent 
with model predictions 

• further analysis is needed to assess whether dark 
condition or sleep is a better model for 
spontaneous activity

9
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Validation on a model trained with natural 
images

Looking for hallmarks of generative models in the visual cortex
Gergő Orbán1, Pietro Berkes2, Máté Lengyel3, József Fiser1

1, Volen Center for Complex Systems, Brandeis University; 2, Gatsby Computational Neuroscience Unit, University College London; 3, CBL, Department of Engineering, University of Cambridge

Introduction
The generative modeling or analysis-by-synthesis
approach is a probabilistic framework to understand
perception [9,14]. One major challenge for assessing
the relevance of this framework to cortical function is to
establish if and how the neural hardware implements
such probabilistic computations. We propose a novel
approach to this problem that, rather than testing a
specific generative model, looks for hallmarks in neural
activity that are fundamental features of the entire class
of generative models. By this approach, we can relate
physiological data to model predictions regardless of the
particular features of the model under assessment.

Framework
GENERATIVE MODELING HYPOTHESIS
•The visual system embodies a probabilistic model of

how visual elements (y, z) combine to form an image
(x): P (x|y), P (y|z), P (z)

x

y

z

V1 neurons

stimulus/image

higher 
visual areas

!objects"

visual
primitives

Neural 

representation

External

world

Visual perception
• Inverting the model to infer likely causes of the

stimulus: P (y|x)

•Result of inference: ideally, not a single estimate but a
posterior probability distribution

=⇒ A normative, functional account of vision:
•Accounts for electrophysiological and psychophysical

data (context-dependency, attention, illusions) [5,7,10]
•Reproduces a variety of RF characteristics of V1

neurons [2,6,8,11,13]

SAMPLING HYPOTHESIS How can a distribution be
represented by neural activity?

Sampling hypothesis [5]

y
1

y
2

ti
ti+2

ti+1

classical 

estimate

•Compatible with traditional interpretation: classical
view relied on the marginals of the distribution (or the
mean of it)

•Consistent with the observation of high trial-by-trial
variability [1,4,12]

How can generative models be
traced down by experiments?
•The space of possible generative models is

extremely large
•The ’exact’ generative model might be too complex

OUR APPROACH:
Look for hallmarks in neural activity that are
characteristics of the entire class of models

CURRENT FOCUS: Spontaneous activity
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Evoked activitySpontaneous activity

How are these activities related?
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Neural data
• In the awake brain there is structured neural activity

not directly related to the stimulus

•Structure of neural activities are similar in stimulus
evoked condition and closed eye condition

Evoked Spontaneous

(Tsodyks et al, 1999)

•There are long-range correlations in neural activity

(Fiser et al, 2004)

Model
In silico we can assume a specific generative model and
test our hypothesis under experimental conditions

x

y

zi

Evoked activity (EA) PEA(y|x)
∫

P (y|x, z) P (z) dz ∝∫
P (x|y) P (y|z) P (z) dz

Marginalized EA PmEA(y)
∫

PEA(y|x) P (x) dx

Spontaneous activity (SA) PSA(y)
∫

P (y|z) P (z) dz

LEARNING THE MODEL
•Pretraining with greedy RBM [15]
•Performing Expectation-Maximization on natural image

patches
1. Expectation: Gibbs sampling from the posterior

P
(
y1|y{n}, z, x

)
=

P (x|y)P (y1|z)∑
{y1} P (x|y)P (y1|z)

; P (z1|z{n}, y, x) =
P (y|z)P (z1)∑
{z1} P (y|z)P (z1)

2. Maximization: θ∗ = argmaxθ
∏

{x} P (x|θ)

Evaluation of differences in
SA and EA distributions
Küllback-Leibler divergence (KL) is a principled tool for
providing a measure of simarity between distributions:

KL [PSA(y) , PEA(y)] = −
∫

PSA(y) log PEA(y) dy −H(PSA(y))

Cartoon of KL calculation

SA samples EA samples

•We only have samples from the distributions
•Samples from the SA can be used to perform a

Monte-Carlo integral:
∫

PSA(y) log PEA(y) dx =
1

Nsamples

∑

yi PSA

log PEA(yi)

•Samples from EA are used to learn a distribution

Results
•We compare EA and SA distributions under different

conditions

KL for natural and random image-evoked activities
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Similarity is significantly
higher for EA on natural
images

•Difference is expected to be smaller in a naı̈ve model
(young animal)

KL in untrained network

natural random
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1.95
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P

S
A
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y
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in
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P
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A
 (

y
) 

d
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Naı̈ve model can not
distinguish between natural
and random image patches

•Under experimental conditions, only a subset of
neurons can be accessed

KL on partial observation
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) 

d
y

Partial data is sufficient for
evaluating the EA and SA
distributions

Conclusions
•Variability in evoked activity and spontaneous activity

have a common interpretation in the framework of
Bayesian generative models

•Distribution of spontaneous activity is related to the
distribution of evoked activity through marginalizing
over the image statistics

•We demonstrated a tool for evaluating distributions of
spike train data: KL divergence can be used for the
characterization of the whole distribution of neural
activities even if only a few neurons can be measured
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