
Network processing of 
taste



Sequence of 3 Talks

Framework: recap of last year—single-neuron and 
ensemble dynamics (Katz)
Relating these to cognitive dynamics (Fontanini)
Modeling ensemble dynamics (Miller)



Single neurons

Field potentials

Methods for investigating gustatory networks 
in actively tasting rats.
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Within-response complexity:  GC 
temporal codes
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Responses appear to change gradually in 
PSTHs

Jones, Fontanini, et al, submitted
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When looked at as a population, however, 
single trials look much more . . . orderly
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Description: shaded is; for argument’s sake I want you to focus on the red cells and you will see how they covary trial-by-trial. 1; 2; 3. 

So it appears that the ensemble is reliably going through 2 distinct network states (each characterized by a specific pattern of network activity)  which are repeated trial by trial.

Of course we couldn’t eyeball this analysis  so we turned to a pretty sophisticated statistical method: HMM analysis. 

This work has been done in collaboration with a computational post-doc in the lab: Lauren Jones; who dealt with most of the technical issues of the HMM.



HMMINPUT

OUTPUT

Hidden Markov Model (HMM)—the tool for 
this job

Jones, Fontanini, et al, submitted

Presenter
Presentation Notes
An HMM consists of two things (1) a set of states. These are defined by firing rates of individual neurons, and I’ve color coded and numbered for clarity

States are called ‘hidden’ because they are not directly observable - we presume that these hidden states underlie the observed changes in probabilistic neuronal firing patterns that we record



The second component of an HMM is a set of transition probabilities of passing from one state to another.

The probability of moving into the next state is assumed to depend only on the current state’s transition probabilities - hidden states change in a time-homogenous Markov chain. 

The thickness of the arrows depictss these relative probabilities of transitioning







Jones, Fontanini, et al, submitted

Sucrose Quinine Citric Acid NaCl

Ensembles go through taste-specific 
state sequences

> 500 msec



State sequences are bona fide— 
analysis of transitions

Jones, Fontanini, et al, submitted
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Within-taste shuffling

Destroys coherence
Spares all temporal 
information in PSTHs

*p<0.05
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Remember these are hidden states, So suppose we KNOW the states, say we are going from 5 Hz to 10 Hz one second into the data

The average ISI = inter-spike interval goes from 200 msec to 100 msec

There will be some slop in the time needed to correctly determine the timing of this transition depending on the specific spike train, but it will be somewhere in this range



Taste-related information is degraded by 
trial-averaging—jackknife x-validation

Jones, Fontanini, et al, submitted
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Why is HMM better?
Trial-to-trial variability in response dynamics 
is noise in a PSTH.

This variability is part of the 
information in an analysis of the 
coherent hidden states exposed 
in the HMM.

*
*p<0.05
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Fontanini & Katz, 2005, 2006

Cognitive dynamics, long time-scales

~ 1.5 hr

Attentive Inattentive

Attentive Inattentive

GC
LFP:

What loss of attention does: 
changes “taste space” to 
maximize palatability information.
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