

Conceptual framework

What to compute	Independent underlying components (functional model)
 How to compute 	Probabilistic normative approach (full inference)
 How to validate 	Compare it to physiological measures (spontaneous activity)
How to extend this framework to visual learning?	
 What to compute 	Learning representations of the underlying independent components
How to compute	Different types of representational learning schemes
 How to validate 	Compare the performance of learning schemes to human performance

Question

How do humans develop internal representations of the hierarchically structured sensory information they perceive?

The problem of chunking

Some possible answers

By remembering everything holistically

Keeping simple statistics of appearances

Applying recursively pairwise Hebbian associative learning

A wish list

 An experiment with different predicted outcome by the associative and the ideal Bayesian learning model

• A quantitavie prediction by the ideal learner

• ... without any change in the model parameters

Should humans learn chunks when first and secondorder statistics contain no relevant information?

Experiment:

Conclusions

- Human visual chunk learning performance is remarkably close to Bayes-optimal and cannot be captured by naïve statistical learning or by iterative pair-wise associative learning
- Humans seem to learn new complex information by generating the simplest sufficient representation of the input based on previous experience and not by encoding its full correlational structure
- The present results open the possibility to treat instant perception and learning behavior within the same probabilistic framework