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FIGURE 1. Levels of investigation of the brain organized according to spatial scale. 
Behavior is a property at the highest level involving the entire central nervous system. At 
the lowest level we can study the individual molecules of the brain such as neurotrans- 
mitters and receptors. There are many -intermediate levels between these two that could 
contribute to the origin and nature of Self: : 
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Figure 1: An example of scale-invariant dynamics in a neuronal response. The plots show the

change of firing rate for a fast-firing neuron in the electrosensory system of a weakly electric fish

in response to a sustained amplitude modulation of the electric field around the fish. The plots at

left show that the response scales; firing rate histograms over ranges up to 1, 10, and 100 seconds

all look the same if drawn with appropriately scaled axes. The plot at right shows that the function

A/(C + ln(t)) provides an excellent fit of the data over 5 orders of magnitude. (From Xu et al.,

1996.)

Definition of Scale-Invariant Dynamics and its Relation to Eigenvalue Spectra

The dynamics that is almost always used to model neural system is characterized by expo-

nential responses and recoveries. As seen in figure 1, scale invariant systems behave quite

differently, they have dynamics that is logarithmic or power-law in time. How can such

dynamics arise?

An excellent way to characterize the dynamics of highly interconnected systems, whether

a network of interacting molecules or of neurons, is through the spectrum of their eigen-

values. Typical models characterize even complex dynamics by considering a few differ-

ent eigenvalues, which then determine the time constants that govern the system. Scale-

invariant systems, on the other hand, are characterized by large numbers of eigenvalues

densely populating the entire range of allowed values, something that can only arise in

very large interacting systems such as those encounted in neuroscience. The eigenvalue

spectra of such systems can be specified by a quantity ρ(λ) which gives the density of

eigenvalues about the point λ. In preliminary work for this proposal, I have shown that a

scale-invariant dynamics similar to that shown in figure 1 can arise if the density of eigen-

values is exponentially distributed,

ρ(λ) ∝ exp(−βλ) , (3.1)

where β is a constant that controls the short-time behavior of the system. Scale-invariant

dynamics arising from such a system is shown in figure 2, where the type of adaptation

3

Xu, Payne & Nelson, 1996
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Timing-Based Plasticity in Barrel Cortex
51

Figure 6. Depression of EPSPs Uncorrelated with Postsynaptic APs

(A) Example of LTD induced by randomly varying AP-EPSP delays
(range of delays: !50 to "50 ms).
(A1) Five consecutive postsynaptic APs evoked during pairing, rela-Figure 5. Temporal Windows for Induction of LTP and LTD by AP-
tive to the mean baseline and postpairing EPSPs. Dashed line, EPSPEPSP Pairing
onset.

(A) EPSP slope ratio for each cell tested, as a function of AP-EPSP (A2) Actual distribution of AP-EPSP delays during pairing for this
delay during pairing. Triangles, standard AP-EPSP pairing protocol cell, relative to the windows for LTP and LTD (from Figure 5).
at 20#C–23#C. Closed circles, delay change protocol at 20#C–23#C. (A3) EPSP slope for each sweep of the experiment. Pairing with
Squares, delay change protocol at 32# $ 1#C. Lines connect mean random delays induced LTD (EPSP slope ratio: 0.45).
slope ratios for different ranges of pairing delays (see text). %t & 0 (B) Mean effect of pairing with random delays. Seven cells were
indicates positive delays, and %t ' 0 indicates negative delays. tested with delays that varied randomly from !50 to "50 ms (closed
Dashed lines, $SEM for cells in control experiments (n ( 16). circles), and five cells were tested with delays that varied from !10
(B) Mean EPSP slope ratio for the different ranges of pairing delays. to "10 ms (open circles).
Closed points show delays that produced EPSP slope ratios signifi- (Inset) Actual distribution of pairing delays across all cells for each
cantly different from those in control experiments. group.
(C) Plasticity does not require disinhibition. Top, PSPs from repre-
sentative cells with and without BMI (solid traces, Vm ( !73 mV;
dotted traces, Vm ( !50 mV). With BMI, depolarization lengthened initial slope of PSPs that had an initial excitatory compo-
EPSPs, consistent with NMDA receptor activation, but revealed no nent. Under these conditions, pairing delays of "10 msIPSPs. Without BMI, depolarization often revealed early EPSPs fol-

resulted in LTP (mean slope ratio: 1.20 $ 0.05, n ( 4),lowed by later, hyperpolarizing IPSPs. Bottom, effect of AP-EPSP
and pairing delays of !20 ms resulted in LTD (0.85 $pairing for all cells tested without BMI. Bars show mean $ SEM.
0.04, n ( 5). LTP and LTD were significant across the(D) The long window for LTD induction is not due to blockade of
population (LTP: p ' 0.05, LTD: p ' 0.05, two-tailed,AHPs by BMI. Top, BMI but not PTX reduces the mAHP in a repre-

sentative cell. Traces are means of 10–15 sweeps. Bottom, AP-EPSP one-sample t test) but were somewhat smaller in magni-
pairing at !50 ms delays induced significant LTD in the presence of tude than when BMI was present (LTP: 1.33 $ 0.07, n (
both PTX and BMI. BMI data are from experiments in Figures 3 and 10; LTD: 0.80 $ 0.04, n ( 13). Thus, disinhibition is
4. Abbreviations: fAHP and mAHP, fast and medium AHPs following not required for induction of LTP and LTD by AP-EPSP
a single AP (truncated); Rec, recovery after BMI. pairing, though it may increase the magnitude of plas-

ticity.
Recently, it was shown that BMI directly blocks Ca2"-

tion of timing-based plasticity. Additional experiments dependent afterhyperpolarizations (AHPs) in some cells
were performed in slices that had not been exposed to (Debarbieux et al., 1998) and therefore could delay repo-
BMI (Figure 5C). In these experiments, layer IV stimula- larization after the AP and potentially change the window
tion evoked compound PSPs usually containing both for LTD induction. To determine if the long LTD window
excitatory and inhibitory components, as determined by at this synapse was a result of BMI blocking the AHP,
recording at resting (!75 mV) and depolarized (!50 mV) AP-EPSP pairing was performed in a separate group of
potentials (ECl: !70 mV). IPSPs were evident as hyperpo- cells using picrotoxin (PTX) to block GABAA currents

instead of BMI. PTX does not block AHPs (Debarbieuxlarizations at !50 mV. Analysis was restricted to the

Feldman, DE (2000)
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