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How does the visual brain 
solve its perceptual puzzles?



• Generative knowledge used to 
resolve ambiguity about objects

• Some instances of perceptual “aha’s” 
suggest generative mechanisms 

• Requires an understanding of 
interactions between cortical areas

Summary



Teaser

• Oxymorons?

• Perception as “unconscious 
inference”

• “Unconscious insight?”



Outline

• Object perception: The problem of 
ambiguity

• Theory: Vision as statistical inference

• Behavior: Perceptual “puzzles”

• Mechanisms:  Resolving ambiguity



Shape

Geometric properties

Size & 
depth



Material properties

Transparency



Local ambiguity
How to get reliable and 
useful information 
about objects/scene S,  
from complex 
patterns I, with locally 
ambiguous image 
data?

From: Mumford, 
2002



Objective ambiguity is the norm
Different objects S1 & S2, 

same image I

Subjective 
ambiguity is rare

Surface representation of 
image intensities, I(x,y)

Same object S, 
different images, I1 & I2

xy

I



Outline

• Object perception: The problem of 
ambiguity

• Theory: Humans as Bayesian agents

• Behavior: Perceptual “puzzles”

• Mechanisms:  Resolving ambiguity



Bayes tools
• Key concepts important to describing 

perceptual behavior

• Represent hypotheses AND 
uncertainty

• Utility

• what to estimate with precision 
and what to discount

• Provide quantitative models that 
bridge behavior and neural networks



Lots of 
structure

here!

Humans as Bayesian agents
Actions/Decisions based on:

• models of probability on structured 
representations (“built-in” knowledge) 
of how object hypotheses S explain 
image patterns I: p(S, I)

• task utility, L(a(I),S)
-> Choose actions that maximize utility, 
given uncertainty

Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian 
Inference. Annual Review of Psychology, 55, 271-304.

a∗(I) = arg max
a

∑

S

p(S|I)L(a(I), S)



Simple influence graphs

Kersten, D., & Yuille, A. (2003). Bayesian models of object perception. Current 
Opinion in Neurobiology, 13(2), 1-9.

Need to estimate
accurately

Image
measurement

Do not need
to estimate
accurately

Auxiliary
measurement

Cue integration

p(S1 | I1, I2)

Invariance/
Discounting

p(S1 | I1)

Explaining away

p(S1, S2  | I1)

Observations are
conditionally
independent

Observation induces 
conditional
dependence

Basic Bayes

p(S | I)

Trade-off between 
prior and image 

“data”



Simple influence graphs

Cue integration

p(S1 | I1, I2)

Invariance/
Discounting

p(S1 | I1)

Explaining away

p(S1, S2  | I1)

Quantitative models
Cf. Kersten, Mamassian & Yuille, 2004

Basic Bayes

p(S | I)



Necker cube

Basic Bayes

p(S | I)

From: Schrater, P. and Sundareswara, R. (2006) “Theory and Dynamics of 
Perceptual Bistability”, NIPS 2006



Explaining away 
Did I leave the sprinkler on last night?

Left sprinkler on? Rained last night?

My lawn is wet My neighbor’s lawn
is wet

Probably not

Pearl, Judea. (1988). Probabilistic reasoning in intelligent systems: 
networks of plausible inference (Rev. 2nd printing. ed.). San Mateo, Calif.: 
Morgan Kaufmann Publishers.

ProbablyProbably Probably not



Outline

• Object perception: The problem of 
ambiguity

• Theory: Vision as statistical inference

• Behavior: Perceptual “puzzles”

• Mechanisms:  Resolving ambiguity



Resolving ambiguity 
without an “aha”

• Can be subjectively instantaneous

• or

• Gradual



Interactions between 
perception of geometry 

and material

• No subjective ambiguity

• Subjective ambiguity 



Knill & Kersten (1991)

Lightness & shape



Type of inference



• Apparent glossiness 
takes into account 
how highlights spread 
as a function of 
curvature

• Consistent with 
statistics of patterns 
of natural 
illumination

Hartung & Kersten

Matte or shiny?



Learning a camouflaged 
object

Test with
novel

camouflage
Training: each

image is a 
different

rendering



• Change blindness

• Mooney

• Hidden figure

• Bistable perceptual 

organization

Some perceptual “aha’s”

http://www.cs.ubc.ca/~rensink/
flicker/download/Airplane.mov



Looking as if you know: Systematic object inspection precedes object recognition. Holm, Eriksson, & 
Andersson, Journal of Vision (2008) 8(4):14, 1–7

Hidden figure

Linus Holm



Looking as if you know: Systematic object inspection precedes object recognition. Holm, Eriksson, & 
Andersson, Journal of Vision (2008) 8(4):14, 1–7



Material and 
Geometrical Structure

Kersten, D., Bülthoff, H. H., Schwartz, B., & Kurtz, K. (1992) Neural 
Computation, 4, 573-589.





Perceptual organization
of shape

Lorenceau, J., & Shiffrar, M. (1992). The influence of terminators on 
motion integration across space. Vision Res, 32(2), 263-273.

Do you see a diamond moving horizontally?



The “solution”



Computational problems: Local integration

Object 
motion

Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal 
percepts. Nat Neurosci, 5(6), 598-604.

Local motion 
measurements



Computational problems: Model selection

?

Object 
motion

Object 
motions

Local
motion



or or not

?

Auxiliary evidence for occlusion

Computational problems: Explaining away



just for fun...another puzzle
A clue



...and another



Outline

• Object perception: The problem of 
ambiguity

• Theory: Vision as statistical inference

• Behavior: Perceptual “puzzles”

• Mechanisms:  Resolving ambiguity



“Analysis by synthesis”

D. MacKay, U. Grenander, D. Mumford, Rao & Ballard ... 



Analysis by synthesis 
particularly useful when:

• Ambiguity induced by clutter

• Transformations that are computationally 
difficult to do bottom-up, e.g.

• orientation in 3D depth

• articulations, e.g. scissors

• occlusion

• competing/interacting hypotheses



Figure 5: Top left: Input image. Top right: Bottom-up proposals for text and faces are shown

by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image

There is evidence that reliable diagnostic information for certain categories is available from very

simple image measurements [35, 32], and that humans make certain categorical decisions sufficiently

fast to preclude a verification loop [40](but see [41] and [42]).

“Where do the generative models come from?”

Ideally the generative models, the discriminative models, and the stochastic grammar would all

be learnt from natural images. This is not difficult in principle because, as discussed in Griffiths

and Yuille, learning the model from data is simply another example of statistical inference. The

Helmholtz machine [43] gives an illustration of how a generative model, and an inference algorithm,

can be learnt. This approach, however, has been applied only to simple visual stimuli. Similarly

Friston [16] suggests learning models using the Expectation-Maximization algorithm. Although

this is a useful metaphor, the challenge is to see whether this idea can be translated to algorithms

that can deal with the complexities of natural images.

Learning generative and discriminative models is an extremely difficult problem in practice

due to the large dimensionality of natural images. There has recently, however, been dramatic

progress on the similar, but arguably simpler, problem of learning a stochastic grammar for natural

languages (see article by Chater and Manning). At present, different components of the image

parsing model are learnt individually. For example, the discriminative models for text and faces

are trained using labelled examples of “face”, “text”, and “non-face”, “non-text”. Similarly the
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Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005). 
Image Parsing: Unifying Segmentation, 
Detection and Recognition. IJCV, 63(2).
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Synthesized image

Three models: text, faces, 
texture
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by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image
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False alarm

Figure 5: Top left: Input image. Top right: Bottom-up proposals for text and faces are shown

by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image
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False alarm 
explained 

away



V1 activity & perceptual 
organization of shape

Scott Murray, Dan Kersten, Bruno Olshausen, Paul Schrater and 
David Woods 2002. Proc Natl Acad Sci U S A, 99, 15164-15169.

Use BOLD functional MRI to localize 
cortical activity that is correlated with 
the competing perceptual hypotheses 
of

• Coherent diamond vs. less 
coherent line fragments



 V1: Feedforward model 

• Banks of localized spatio-temporal 
filters (receptive fields)

• Feedforward

• with localized feedback for normalization/tuning

Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics 
and sensory gain control. Nat Neurosci, 4(8), 819-825.

Lots of theory...but most working models 
begin with simple assumptions:



V1

• Feedforward processing by local, oriented 
filters would imply little or no effect of 
global structure, but we know...

• within area connections

• between area connections

• longer range modulation of neural 
responses

Cf.
Bullier, J. (2001). Integrated model of visual processing. Brain Res Brain Res Rev, 36(2-3), 96-107.
Friston, K. (2005). A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci, 360(1456), 
815-836.



Grill-Spector, K., Kourtzi, Z., & 
Kanwisher, N. (2001).  Vision Res, 

41(10-11), 1409-1422.

Human V1

Whole shapes

Local, oriented, 
moving edges



V1 response predicts 
behavior



Fang F, Boyaci H, Kersten D, Murray SO (in press)  Journal of Vision



...story is not so simple
• Similar pattern of results:

• Furl, van, Rijsbergen, Treves, Friston, & Dolan, 
2007 

• Harrison, Stephan, Rees, & Friston, 2007

• Summerfield et al., 2006

• ...but
• Dumoulin & Hess, 2006

• Lorenceau, Paradis, Lamirel, Poline, Artiges, Thirion & 
Caclin, VSS 2008

• and some of our own (Jay Hegdé) results using Mooney 
and occluded images (Fang Fang)



Predictive coding

Lower area
(V1) Higher area

HiLo

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts 
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.
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Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

HiLo

Predictive coding

Lower area
(V1) Higher area



Lee & Mumford, 2003, JOSA
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• Generative knowledge used to 
resolve ambiguity about objects

• Some instances of perceptual “aha’s” 
suggest generative mechanisms 

• Requires an understanding of 
interactions between cortical areas

Summary



thanks…
Current lab: Gina Albanese, Peter Battaglia, Charlie 

Benson, Huseyin Boyaci, Katja Doerschner,  Jay Hegdé, 
Jennifer Schumacher, Bobby Shannon, Serena 

Thompson

Recent alumni: Scott Murray, Fang Fang

Collaborators: Sheng He, Paul Schrater, Cheryl Olman, 
Pascal Mamassian, Alan Yuille

...and of course, NIH, NSF & ONR

NIH R01 EY015261, NIH P41 RR08079, NSF SBR-9631682, 
N00014-05-1-0124





“Object” area Local “feature” area

Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. (2002). Shape perception 
reduces activity in human primary visual cortex. Proc Natl Acad Sci U S A, 99, 15164-15169.

Shape perception can 
reduce V1 activity


